

Introduction to Proofs - Sets - Intro

Prof Mike Pawliuk

UTM

May 26, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Define basic terms about sets
- ② Define a set using set-builder notation.
- ③ Distinguish between \emptyset and $\{\emptyset\}$.
- ④ Prove that two sets are equal using the "double subset technique"

Motivation 1

Sets are a playground to experiment with proof techniques.

Motivation

Motivation 1

Sets are a playground to experiment with proof techniques.

Motivation 2

Sets are a fundamental way of encoding math. We can encode lists, numbers and functions all from only sets.

“Definition” (Set)

A set is an un-ordered collection of objects (where repeats are not considered). (Other names: Set, collection, family.)

“Definition” (Set)

A set is an un-ordered collection of objects (where repeats are not considered). (Other names: Set, collection, family.)

Examples:

- $\{1, 2, 5\} = \{5, 2, 1\} = \{1, 1, 2, 5\}$.
- $\{x, y, z\}$.
- $\{\text{Mike, Qun}\}$
- $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \dots\}$.
- $\{1, 7, A\}$, where $A = \{0, 1\}$.

Sets

“Definition” (Set)

A set is an un-ordered collection of objects (where repeats are not considered). (Other names: Set, collection, family.)

Examples:

- $\{1, 2, 5\} = \{5, 2, 1\} = \{1, 1, 2, 5\}$.
- $\{x, y, z\}$.
- $\{\text{Mike, Qun}\}$
- $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \dots\}$.
- $\{1, 7, A\}$, where $A = \{0, 1\}$.

Observations:

- ① Order doesn't matter.

Sets

“Definition” (Set)

A set is an un-ordered collection of objects (where repeats are not considered). (Other names: Set, collection, family.)

Examples:

- $\{1, 2, 5\} = \{5, 2, 1\} = \{1, 1, 2, 5\}$.
- $\{x, y, z\}$.
- $\{\text{Mike, Qun}\}$
- $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \dots\}$.
- $\{1, 7, A\}$, where $A = \{0, 1\}$.

Observations:

- ① Order doesn't matter.
- ② Repeats don't matter.

Sets

“Definition” (Set)

A set is an un-ordered collection of objects (where repeats are not considered). (Other names: Set, collection, family.)

Examples:

- $\{1, 2, 5\} = \{5, 2, 1\} = \{1, 1, 2, 5\}$.
- $\{x, y, z\}$.
- $\{\text{Mike, Qun}\}$
- $\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \dots\}$.
- $\{1, 7, A\}$, where $A = \{0, 1\}$.

Observations:

- ① Order doesn't matter.
- ② Repeats don't matter.
- ③ Sets can contain objects of any type (including other sets!).

Definition ($x \in A$)

If x is an object, and A is a set, we say $x \in A$ if x is an element (or member) of A . We say $y \notin A$ if y is not an element of A .

Examples:

- ① $1 \in \{1, 2, 5\}$ and $3 \notin \{1, 2, 5\}$
- ② $-1 \in \mathbb{Z}$ and $-1 \notin \mathbb{N}$
- ③ $\{0, 1\} \in \{1, 7, \{0, 1\}\}$ and $0 \notin \{1, 7, \{0, 1\}\}$.

Elements

Definition ($x \in A$)

If x is an object, and A is a set, we say $x \in A$ if x is an element (or member) of A . We say $y \notin A$ if y is not an element of A .

Examples:

- ① $1 \in \{1, 2, 5\}$ and $3 \notin \{1, 2, 5\}$
- ② $-1 \in \mathbb{Z}$ and $-1 \notin \mathbb{N}$
- ③ $\{0, 1\} \in \{1, 7, \{0, 1\}\}$ and $0 \notin \{1, 7, \{0, 1\}\}$.

Convention

We prefer to use upper case letters (A, B, C, X, Y) for sets, and lower case letters (a, b, c, x, y) for elements.

Subsets

Definition (subset)

Let A, B be sets. We say that $A \subseteq B$ if and only if $(\forall x)[x \in A \implies x \in B]$.

Examples

- ① $\{1, 7\} \subseteq \{0, 1, 2, 3, 7\}$.
- ② $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

Non-examples

- ① $\{-1, 1\} \not\subseteq \mathbb{N}$.

Subsets

Definition (subset)

Let A, B be sets. We say that $A \subseteq B$ if and only if $(\forall x)[x \in A \implies x \in B]$.

Examples

- ① $\{1, 7\} \subseteq \{0, 1, 2, 3, 7\}$.
- ② $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

Non-examples

- ① $\{-1, 1\} \not\subseteq \mathbb{N}$.

Negation of $A \subseteq B$

$\neg(A \subseteq B)$ means $(\exists x)[x \in A \wedge x \notin B]$

Lemmas about subsets

Lemmas

Let A, B, C be sets.

- ① $A \subseteq A$.
- ② If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Exercise: Prove those two statements directly (by definition unwinding).

Exercise

Exercise

How many elements does the set $B = \{0, 1, A\}$ have?

- ① If $A = 0$, then
- ② If $A = 2$, then
- ③ If $A = \{0, 1\}$, then

Exercise

Exercise

How many elements does the set $B = \{0, 1, A\}$ have?

- ① If $A = 0$, then B has two elements: 0 and 1.
- ② If $A = 2$, then
- ③ If $A = \{0, 1\}$, then

Exercise

Exercise

How many elements does the set $B = \{0, 1, A\}$ have?

- ① If $A = 0$, then B has two elements: 0 and 1.
- ② If $A = 2$, then B has three elements: 0, 1 and 2.
- ③ If $A = \{0, 1\}$, then

Exercise

Exercise

How many elements does the set $B = \{0, 1, A\}$ have?

- ① If $A = 0$, then B has two elements: 0 and 1.
- ② If $A = 2$, then B has three elements: 0, 1 and 2.
- ③ If $A = \{0, 1\}$, then B has three elements: 0, 1, and $\{0, 1\}$.

Empty set

Definition (empty set)

The set without any elements is called the empty set, and is denoted \emptyset .

Empty set

Definition (empty set)

The set without any elements is called the empty set, and is denoted \emptyset .

Exercise

How many elements does the set $B = \{A\}$ have?

- ① If $A = 0$, then B has one element: 0
- ② If $A = 2$, then
- ③ If $A = \emptyset$, then

Empty set

Definition (empty set)

The set without any elements is called the empty set, and is denoted \emptyset .

Exercise

How many elements does the set $B = \{A\}$ have?

- ① If $A = 0$, then B has one element: 0
- ② If $A = 2$, then B has one element: 2.
- ③ If $A = \emptyset$, then

Empty set

Definition (empty set)

The set without any elements is called the empty set, and is denoted \emptyset .

Exercise

How many elements does the set $B = \{A\}$ have?

- ① If $A = 0$, then B has one element: 0
- ② If $A = 2$, then B has one element: 2.
- ③ If $A = \emptyset$, then B has one element: \emptyset .

Empty set

Definition (empty set)

The set without any elements is called the empty set, and is denoted \emptyset .

Exercise

How many elements does the set $B = \{A\}$ have?

- ① If $A = 0$, then B has one element: 0
- ② If $A = 2$, then B has one element: 2.
- ③ If $A = \emptyset$, then B has one element: \emptyset .

Theorem

$\emptyset \neq \{\emptyset\}$.

Set builder notation

Definition (Set builder notation)

If A is a set, and $P(x)$ is a property of x , then

$$\{x \in A : P(x)\}$$

is the set of all $x \in A$ such that $P(x)$ is true.

Example:

① $\{x \in \mathbb{Z} : 1 \leq x < \pi\} = \{1, 2\}.$

Set builder notation

Definition (Set builder notation)

If A is a set, and $P(x)$ is a property of x , then

$$\{x \in A : P(x)\}$$

is the set of all $x \in A$ such that $P(x)$ is true.

Example:

- ① $\{x \in \mathbb{Z} : 1 \leq x < \pi\} = \{1, 2\}$.
- ② $\{x \in \mathbb{N} : x < 5\} = \{1, 2, 3, 4\}$.

Set builder notation

Definition (Set builder notation)

If A is a set, and $P(x)$ is a property of x , then

$$\{x \in A : P(x)\}$$

is the set of all $x \in A$ such that $P(x)$ is true.

Example:

- ① $\{x \in \mathbb{Z} : 1 \leq x < \pi\} = \{1, 2\}.$
- ② $\{x \in \mathbb{N} : x < 5\} = \{1, 2, 3, 4\}.$

- ③ $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z} \wedge q \in \mathbb{N} \right\}$

Set builder notation

Definition (Set builder notation)

If A is a set, and $P(x)$ is a property of x , then

$$\{x \in A : P(x)\}$$

is the set of all $x \in A$ such that $P(x)$ is true.

Example:

① $\{x \in \mathbb{Z} : 1 \leq x < \pi\} = \{1, 2\}$.

② $\{x \in \mathbb{N} : x < 5\} = \{1, 2, 3, 4\}$.

③ $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z} \wedge q \in \mathbb{N} \right\}$

Important rewording

$$y \in \{x \in A : P(x)\} \Leftrightarrow (y \in A \wedge \text{"}P(y)\text{ is true"}.)$$

Set equality

Definition ($A = B$)

Let A, B be sets. We say $A = B$ if $A \subseteq B$ and $B \subseteq A$.

Set equality

Definition ($A = B$)

Let A, B be sets. We say $A = B$ if $A \subseteq B$ and $B \subseteq A$.

Proof technique ($A = B$)

To show $A = B$ (where A, B are sets), you need to show:

- ① $A \subseteq B$, and
- ② $B \subseteq A$

Set equality

Definition ($A = B$)

Let A, B be sets. We say $A = B$ if $A \subseteq B$ and $B \subseteq A$.

Proof technique ($A = B$)

To show $A = B$ (where A, B are sets), you need to show:

- ① $A \subseteq B$, and
- ② $B \subseteq A$

Alternate proof technique ($A = B$)

To show $A = B$ (where A, B are sets), you can show:

$$x \in A \Leftrightarrow x \in B$$

Set equality

Definition ($A = B$)

Let A, B be sets. We say $A = B$ if $A \subseteq B$ and $B \subseteq A$.

Proof technique ($A = B$)

To show $A = B$ (where A, B are sets), you need to show:

- ① $A \subseteq B$, and
- ② $B \subseteq A$

Alternate proof technique ($A = B$)

To show $A = B$ (where A, B are sets), you can show:

$$x \in A \Leftrightarrow x \in B$$

Warning: Avoid using the alternate technique if you are lazy, since you need to check that every \Leftrightarrow is not just a \Rightarrow .

Exercises

- ① Write out all elements of $\{x \in \mathbb{Z} : x^2 - 1 < 3\}$.
- ② Use the definition of subset to prove that $\{1, 2\} \subseteq \{0, 1, 2, 3\}$.
- ③ Express the even integers using set-builder notation.
- ④ Let A be a set. Show that $\emptyset \subseteq A$.
- ⑤ Give an example of sets A, B such that $A \in B$ and $A \subseteq B$ are both true.

Reflection

- What is the difference between $x \in A$ and $A \subseteq B$?
- Think of a real life example of a set with a subset.
- Is it possible for $A \subseteq B$ and $B \subseteq A$? What about $x \in A$ and $A \in x$?
- Is $\emptyset = \{\emptyset\}$? Why or why not?