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Learning Objectives (for this video)

By the end of this video, participants should be able to:
© Identify plausible set identities.
@ Identify plausible locations for counterexamples to a false set identity.

© Prove a set identity using the double subset technique.
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How can we identify when a set identity is true or false? l

Example: Which of the following statements are true for all sets A, B, C?
Q@ ANBCA
Q@ A\B=B\A
Q@ A\(BUC)=(A\B)Nn(A\ C)
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Counterexample

IsAU(B\ C)=(AUB)\ C?
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Counterexample

IsAU(B\ C)=(AUB)\ C?

Idea. Use a diagram to help us find why they are not the same, and where
to find a counterexample.
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Is AU(B\ C)=(AUB)\ C? \

Idea. Use a diagram to help us find why they are not the same, and where
to find a counterexample.

Try A= B = C = {7}, since AN C # 0.
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Counterexample

IsAU(B\ C)=(AUB)\ C?

Idea. Use a diagram to help us find why they are not the same, and where
to find a counterexample.

Try A= B = C = {7}, since AN C # 0.
AU(B\C)=Aub={7}but (AUB)\ C={7}\ {7} =0.
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Double Subset

For all sets A, B, C we have Ax (BUC) =(Ax B)U(A x C).
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We use the double subset technique. First we prove “C".
Let ze Ax (BU C).

Soze (Ax B)U(Ax ().
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Double Subset

For all sets A, B, C we have Ax (BUC) =(Ax B)U(A x C).

Proof.
We use the double subset technique. First we prove “C".
Let ze Ax (BU C).

Soze AxBVvze Ax C.
Soze (Ax B)U(Ax ().
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Let ze Ax (BU C).

There is an x € Aand y € (BU C) such that z = (x, y).
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Double Subset

For all sets A, B, C we have Ax (BUC) =(Ax B)U(A x C).

Proof.

We use the double subset technique. First we prove “C".
Let ze Ax (BU C).

There is an x € Aand y € (BU C) such that z = (x, y).
Soxe AAN(yeBvye ().
So(xe ANy eB)V(xe ANy € C)|AsPA(QVR)=(PAQ)V(PAR).|
Soze AxBVvze Ax C.

Soze (Ax B)U(Ax ().

The D direction is an exercise for you.
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Set identity using iff

DeMorgan'’s law for sets
For sets A, B, C we have A\ (BUC) = (A\ B)N(A\ C).

Proof.

Note that

x e A\ (BUC)
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Set identity using iff
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Note that

xe€A\(BUC)e xe AN-(xe(BUCQ)) Defn of X'\ Y
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Reflection

@ How are set identities related to identities in logic?

@ What is a way to search for a counterexample systematically, and not
randomly?

@ What set identity corresponds to the logic identity
A\ (BN C)=(A\B)U(A\ C)?
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