

Introduction to Proofs - Sets - Identities and Counterexamples

Prof Mike Pawliuk

UTM

May 28, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Identify plausible set identities.
- ② Identify plausible locations for counterexamples to a false set identity.
- ③ Prove a set identity using the double subset technique.

Motivation

How can we identify when a set identity is true or false?

Example: Which of the following statements are true for all sets A, B, C ?

- ① $A \cap B \subseteq A$
- ② $A \setminus B = B \setminus A$
- ③ $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$

Counterexample

Example 1

Is $A \cup (B \setminus C) = (A \cup B) \setminus C$?

Counterexample

Example 1

Is $A \cup (B \setminus C) = (A \cup B) \setminus C$?

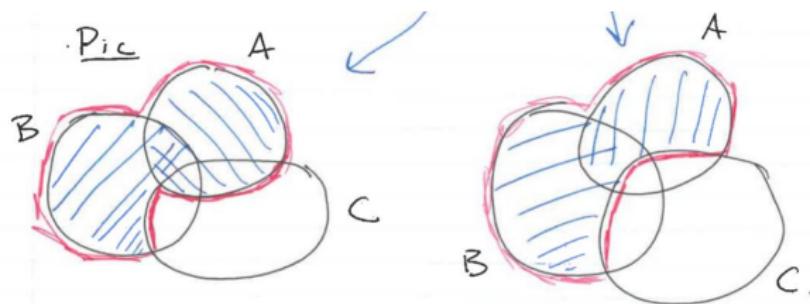
Idea. Use a diagram to help us find why they are not the same, and where to find a counterexample.

Counterexample

Example 1

Is $A \cup (B \setminus C) = (A \cup B) \setminus C$?

Idea. Use a diagram to help us find why they are not the same, and where to find a counterexample.

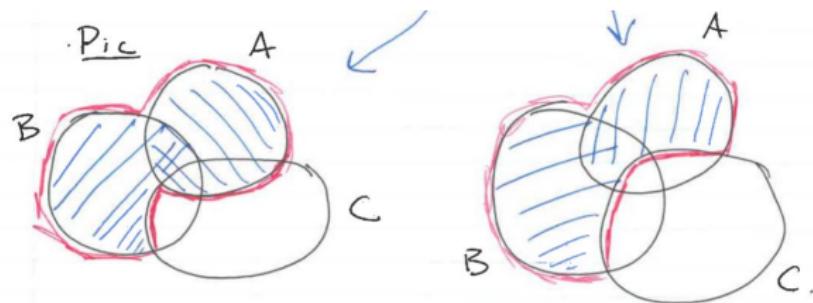


Counterexample

Example 1

Is $A \cup (B \setminus C) = (A \cup B) \setminus C$?

Idea. Use a diagram to help us find why they are not the same, and where to find a counterexample.



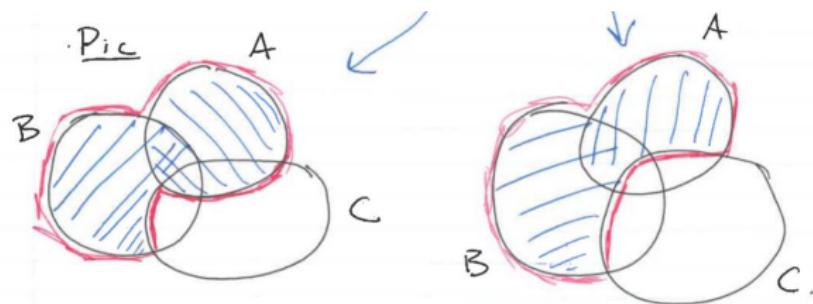
Try $A = B = C = \{7\}$, since $A \cap C \neq \emptyset$.

Counterexample

Example 1

Is $A \cup (B \setminus C) = (A \cup B) \setminus C$?

Idea. Use a diagram to help us find why they are not the same, and where to find a counterexample.



Try $A = B = C = \{7\}$, since $A \cap C \neq \emptyset$.

$A \cup (B \setminus C) = A \cup \emptyset = \{7\}$ but $(A \cup B) \setminus C = \{7\} \setminus \{7\} = \emptyset$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Let $z \in A \times (B \cup C)$.

So $z \in (A \times B) \cup (A \times C)$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Let $z \in A \times (B \cup C)$.

So $z \in A \times B \vee z \in A \times C$.

So $z \in (A \times B) \cup (A \times C)$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Let $z \in A \times (B \cup C)$.

There is an $x \in A$ and $y \in (B \cup C)$ such that $z = (x, y)$.

So $z \in A \times B \vee z \in A \times C$.

So $z \in (A \times B) \cup (A \times C)$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Let $z \in A \times (B \cup C)$.

There is an $x \in A$ and $y \in (B \cup C)$ such that $z = (x, y)$.

So $x \in A \wedge (y \in B \vee y \in C)$.

So $z \in A \times B \vee z \in A \times C$.

So $z \in (A \times B) \cup (A \times C)$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Let $z \in A \times (B \cup C)$.

There is an $x \in A$ and $y \in (B \cup C)$ such that $z = (x, y)$.

So $x \in A \wedge (y \in B \vee y \in C)$.

So $(x \in A \wedge y \in B) \vee (x \in A \wedge y \in C)$.

So $z \in A \times B \vee z \in A \times C$.

So $z \in (A \times B) \cup (A \times C)$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Let $z \in A \times (B \cup C)$.

There is an $x \in A$ and $y \in (B \cup C)$ such that $z = (x, y)$.

So $x \in A \wedge (y \in B \vee y \in C)$.

So $(x \in A \wedge y \in B) \vee (x \in A \wedge y \in C)$. As $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$.

So $z \in A \times B \vee z \in A \times C$.

So $z \in (A \times B) \cup (A \times C)$.

Double Subset

Theorem

For all sets A, B, C we have $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof.

We use the double subset technique. First we prove " \subseteq ".

Let $z \in A \times (B \cup C)$.

There is an $x \in A$ and $y \in (B \cup C)$ such that $z = (x, y)$.

So $x \in A \wedge (y \in B \vee y \in C)$.

So $(x \in A \wedge y \in B) \vee (x \in A \wedge y \in C)$. As $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$.

So $z \in A \times B \vee z \in A \times C$.

So $z \in (A \times B) \cup (A \times C)$.

The \supseteq direction is an exercise for you.

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$\begin{aligned} x \in A \setminus (B \cup C) &\Leftrightarrow \\ &\Leftrightarrow \end{aligned}$$

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$x \in A \setminus (B \cup C) \Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C)$$

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$x \in A \setminus (B \cup C) \Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow x \in (A \setminus B) \wedge (x \in A \setminus C)$$

$$\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C)$$

Defn of $X \cap Y$

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$x \in A \setminus (B \cup C) \Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow$$

$$\Leftrightarrow (x \in A \wedge x \notin B) \wedge (x \in A \wedge x \notin C)$$

$$\Leftrightarrow x \in (A \setminus B) \wedge x \in (A \setminus C)$$

Defn of $X \setminus Y$

$$\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C)$$

Defn of $X \cap Y$

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$\begin{aligned} x \in A \setminus (B \cup C) &\Leftrightarrow x \in A \wedge \neg(x \in (B \cup C)) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow \\ &\Leftrightarrow \\ &\Leftrightarrow \\ &\Leftrightarrow (x \in A \wedge x \notin B) \wedge (x \in A \wedge x \notin C) \\ &\Leftrightarrow x \in (A \setminus B) \wedge x \in (A \setminus C) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C) && \text{Defn of } X \cap Y \end{aligned}$$

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$\begin{aligned} x \in A \setminus (B \cup C) &\Leftrightarrow x \in A \wedge \neg(x \in (B \cup C)) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow x \in A \wedge \neg(x \in B \vee x \in C) && \text{Defn of } X \cup Y \\ &\Leftrightarrow \\ &\Leftrightarrow \\ &\Leftrightarrow (x \in A \wedge x \notin B) \wedge (x \in A \wedge x \notin C) \\ &\Leftrightarrow x \in (A \setminus B) \wedge x \in (A \setminus C) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C) && \text{Defn of } X \cap Y \end{aligned}$$

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$\begin{aligned} x \in A \setminus (B \cup C) &\Leftrightarrow x \in A \wedge \neg(x \in (B \cup C)) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow x \in A \wedge \neg(x \in B \vee x \in C) && \text{Defn of } X \cup Y \\ &\Leftrightarrow x \in A \wedge x \notin B \wedge x \notin C && \text{Logic DeMorgan} \\ &\Leftrightarrow \\ &\Leftrightarrow (x \in A \wedge x \notin B) \wedge (x \in A \wedge x \notin C) \\ &\Leftrightarrow x \in (A \setminus B) \wedge x \in (A \setminus C) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C) && \text{Defn of } X \cap Y \end{aligned}$$

Set identity using iff

DeMorgan's law for sets

For sets A, B, C we have $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Proof.

Note that

$$\begin{aligned} x \in A \setminus (B \cup C) &\Leftrightarrow x \in A \wedge \neg(x \in (B \cup C)) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow x \in A \wedge \neg(x \in B \vee x \in C) && \text{Defn of } X \cup Y \\ &\Leftrightarrow x \in A \wedge x \notin B \wedge x \notin C && \text{Logic DeMorgan} \\ &\Leftrightarrow x \in A \wedge x \in A \wedge x \notin B \wedge x \notin C && P \equiv P \wedge P \\ &\Leftrightarrow (x \in A \wedge x \notin B) \wedge (x \in A \wedge x \notin C) && P \wedge Q \equiv Q \wedge P \\ &\Leftrightarrow x \in (A \setminus B) \wedge x \in (A \setminus C) && \text{Defn of } X \setminus Y \\ &\Leftrightarrow x \in (A \setminus B) \cap (A \setminus C) && \text{Defn of } X \cap Y \end{aligned}$$

Reflection

- How are set identities related to identities in logic?
- What is a way to search for a counterexample systematically, and not randomly?
- What set identity corresponds to the logic identity
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
?