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Learning Objectives (for this video)

By the end of this video, participants should be able to:
© Name and define the parts of a function (domain, codomain,
range/image).
@ Represent a function using an arrow diagram.
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Functions are basic objects that are closely related to sets. They appear
everywhere in math.
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Definition of a function

“Definition” (Function)

A function f : A — Bis a "rule” (or “machine”) that associates to every
element a € A an element f(a) € B.

@ Input: Any point from A.
@ QOutput: Any point from B.
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Definition of a function

“Definition” (Function)

A function f : A — Bis a "rule” (or “machine”) that associates to every
element a € A an element f(a) € B.

@ Input: Any point from A.
@ QOutput: Any point from B.

Non-example. f : [0,00) — R defined by f(x) = £+/x is not a function,
since f(4) =2 and f(4) = —2.
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Definition (Domain, Codomain)

If f: A— B is a function then A is called the domain and B is called the
codomain of f.
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Definition (Domain, Codomain)

If f: A— B is a function then A is called the domain and B is called the
codomain of f.

Example 1

If f(x) = % we usually mean f: R\ {1} — R, or
f:R\ {1} - R\ {0}.
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Arrow diagrams

Let g : {1,2,3} — {Mike, 7,0} be defined by g(1) = Mike, g(2) = Mike,

g(3)=0.
Here dom(g) = {1,2,3} and codom(g) = {Mike, 7,0}
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Arrow diagrams

Let g : {1,2,3} — {Mike, 7,0} be defined by g(1) = Mike, g(2) = Mike,

g(3)=0.
Here dom(g) = {1,2,3} and codom(g) = {Mike, 7,0}
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Codomain Example

Consider f : [-2,1] — (—1,10) defined by f(x) = x2. What is:
e f(1)=
o f(—1)=
e f(2) =
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Codomain Example

Consider f : [-2,1] — (—1,10) defined by f(x) = x2. What is:
e f(1)=1
o f(-1)=1
e f(2) =
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Codomain Example

Consider f : [-2,1] — (—1,10) defined by f(x) = x2. What is:
e f(1)=1
o f(-1)=1
e f(2) s not defined, since 2 ¢ dom(f).

Prof Mike Pawliuk (UTM) Intro to Proofs May 28, 2020 7/13



Definition (Range)

If f : A— B is a function, then the range (or image) of f is

{f(a) : a € A}

Equivalently, y € ran(f) < (Ja € A)[y = f(a)].
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Definition (Range)

If f : A— B is a function, then the range (or image) of f is

{f(a) : a € A}

Equivalently, y € ran(f) < (Ja € A)[y = f(a)].

Using the function f : [-2,1] — (—1,10) defined by f(x) = x?:
e dom(f) =[-2,1].
e codom(f) = (—1,10).
e ran(f) =[0,4].
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Another example

Using the function g : {1,2,3} — {Mike, 7,0} defined by g(1) = Mike,
g(2) = Mike, g(3) = 0.

e dom(g) =1{1,2,3}.

e codom(g) = {Mike, 7, 0}.

e ran(g) =
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Another example

Using the function g : {1,2,3} — {Mike, 7,0} defined by g(1) = Mike,
g(2) = Mike, g(3) = 0.

e dom(g) =1{1,2,3}.

e codom(g) = {Mike, 7,0}.

e ran(g) = {g(1),£(2),g(3)} = {Mike, Mike, 0} = {Mike, 0}.
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Image of a set

Definition (Image)

If f: A— B is a function, and C C A, then the image of C under f is the
set:

F(C) = {f(c): ceC}.

Example

If g: N — R is defined by g(x) = (—1)*, and E is the collection of even
naturals, then

e codom(g) =

e ran(g) =
° g(E) =
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Image of a set

Definition (Image)

If f: A— B is a function, and C C A, then the image of C under f is the
set:

F(C) = {f(c): ceC}.

Example

If g: N — R is defined by g(x) = (—1)*, and E is the collection of even
naturals, then

e codom(g) =R
e ran(g) =
° g(E) =
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Image of a set

Definition (Image)

If f: A— B is a function, and C C A, then the image of C under f is the
set:

F(C) = {f(c): ceC}.

Example

If g: N — R is defined by g(x) = (—1)*, and E is the collection of even
naturals, then

e codom(g) =R
e ran(g) ={-1,1}
° g(E) =

Prof Mike Pawliuk (UTM) Intro to Proofs May 28, 2020 10/13



Image of a set

Definition (Image)

If f: A— B is a function, and C C A, then the image of C under f is the
set:

F(C) = {f(c): ceC}.

Example

If g: N — R is defined by g(x) = (—1)*, and E is the collection of even
naturals, then

e codom(g) =R
e ran(g) ={-1,1}
° g(E)={1}
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Observations

If f: A— B is a function, and C C A, then
Q ran(f) C codom(f).
@ f(C) C codom(f)
@ f(C) Cran(f)
Q ran(f) = f(dom(f))
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Why use codomain?

Observation

It can be useful to use a wider codomain if you don't know the complete
function ahead of time. Computing an exact range is often difficult in
practice.
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Why use codomain?

Observation

It can be useful to use a wider codomain if you don't know the complete
function ahead of time. Computing an exact range is often difficult in
practice.

Example

You want to define a function Country(x) that takes as an input x a year
in which the Olympics were held, and outputs the name of the country
that won the most medals that year.
@ codom(Country) = all countries in the world (including those that no
longer exist).

e ran(Country) = ...
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Why use codomain?

Observation

It can be useful to use a wider codomain if you don't know the complete
function ahead of time. Computing an exact range is often difficult in
practice.

Example

You want to define a function Country(x) that takes as an input x a year
in which the Olympics were held, and outputs the name of the country
that won the most medals that year.
@ codom(Country) = all countries in the world (including those that no
longer exist).

e ran(Country) = ... requires research to find out.
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Reflection

@ What are the key parts of a function?

@ If a function is given to you as f : A — B, what two features can you
identify already?

@ What is the difference between the codomain and range of a function?
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