

Introduction to Proofs - Functions

Prof Mike Pawliuk

UTM

May 28, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Name and define the parts of a function (domain, codomain, range/image).
- ② Represent a function using an arrow diagram.

Motivation

Motivation

Functions are basic objects that are closely related to sets. They appear everywhere in math.

Definition of a function

“Definition” (Function)

A function $f : A \rightarrow B$ is a “rule” (or “machine”) that associates to every element $a \in A$ an element $f(a) \in B$.

- **Input:** Any point from A .
- **Output:** Any point from B .

Definition of a function

“Definition” (Function)

A function $f : A \rightarrow B$ is a “rule” (or “machine”) that associates to every element $a \in A$ an element $f(a) \in B$.

- **Input:** Any point from A .
- **Output:** Any point from B .

Non-example. $f : [0, \infty) \rightarrow \mathbb{R}$ defined by $f(x) = \pm\sqrt{x}$ is not a function, since $f(4) = 2$ and $f(4) = -2$.

Definition (Domain, Codomain)

If $f : A \rightarrow B$ is a function then A is called the domain and B is called the codomain of f .

Notation

Definition (Domain, Codomain)

If $f : A \rightarrow B$ is a function then A is called the domain and B is called the codomain of f .

Example 1

If $f(x) = \frac{1}{x-1}$ we usually mean $f : \mathbb{R} \setminus \{1\} \rightarrow \mathbb{R}$, or
 $f : \mathbb{R} \setminus \{1\} \rightarrow \mathbb{R} \setminus \{0\}$.

Arrow diagrams

Example 2

Let $g : \{1, 2, 3\} \rightarrow \{\text{Mike}, 7, \emptyset\}$ be defined by $g(1) = \text{Mike}$, $g(2) = \text{Mike}$, $g(3) = \emptyset$.

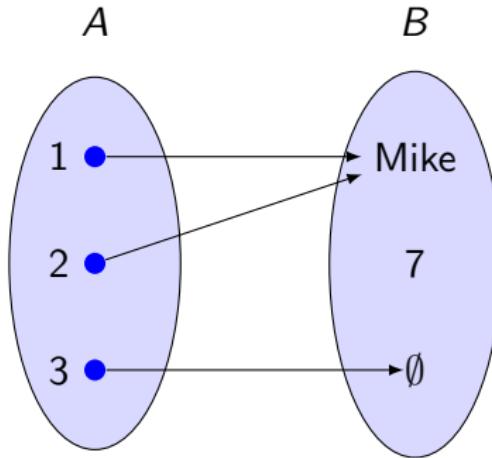
Here $\text{dom}(g) = \{1, 2, 3\}$ and $\text{codom}(g) = \{\text{Mike}, 7, \emptyset\}$

Arrow diagrams

Example 2

Let $g : \{1, 2, 3\} \rightarrow \{\text{Mike}, 7, \emptyset\}$ be defined by $g(1) = \text{Mike}$, $g(2) = \text{Mike}$, $g(3) = \emptyset$.

Here $\text{dom}(g) = \{1, 2, 3\}$ and $\text{codom}(g) = \{\text{Mike}, 7, \emptyset\}$



Codomain Example

Example

Consider $f : [-2, 1] \rightarrow (-1, 10)$ defined by $f(x) = x^2$. What is:

- $f(1) =$
- $f(-1) =$
- $f(2) =$

Codomain Example

Example

Consider $f : [-2, 1] \rightarrow (-1, 10)$ defined by $f(x) = x^2$. What is:

- $f(1) = 1$
- $f(-1) = 1$
- $f(2) =$

Codomain Example

Example

Consider $f : [-2, 1] \rightarrow (-1, 10)$ defined by $f(x) = x^2$. What is:

- $f(1) = 1$
- $f(-1) = 1$
- $f(2)$ is not defined, since $2 \notin \text{dom}(f)$.

Definition (Range)

If $f : A \rightarrow B$ is a function, then the range (or image) of f is

$$\{f(a) : a \in A\}.$$

Equivalently, $y \in \text{ran}(f) \Leftrightarrow (\exists a \in A)[y = f(a)].$

Range

Definition (Range)

If $f : A \rightarrow B$ is a function, then the range (or image) of f is

$$\{f(a) : a \in A\}.$$

Equivalently, $y \in \text{ran}(f) \Leftrightarrow (\exists a \in A)[y = f(a)].$

Example 1

Using the function $f : [-2, 1] \rightarrow (-1, 10)$ defined by $f(x) = x^2$:

- $\text{dom}(f) = [-2, 1]$.
- $\text{codom}(f) = (-1, 10)$.
- $\text{ran}(f) = [0, 4]$.

Another example

Example 2

Using the function $g : \{1, 2, 3\} \rightarrow \{\text{Mike}, 7, \emptyset\}$ defined by $g(1) = \text{Mike}$, $g(2) = \text{Mike}$, $g(3) = \emptyset$.

- $\text{dom}(g) = \{1, 2, 3\}$.
- $\text{codom}(g) = \{\text{Mike}, 7, \emptyset\}$.
- $\text{ran}(g) =$

Another example

Example 2

Using the function $g : \{1, 2, 3\} \rightarrow \{\text{Mike}, 7, \emptyset\}$ defined by $g(1) = \text{Mike}$, $g(2) = \text{Mike}$, $g(3) = \emptyset$.

- $\text{dom}(g) = \{1, 2, 3\}$.
- $\text{codom}(g) = \{\text{Mike}, 7, \emptyset\}$.
- $\text{ran}(g) = \{g(1), g(2), g(3)\} = \{\text{Mike}, \text{Mike}, \emptyset\} = \{\text{Mike}, \emptyset\}$.

Image of a set

Definition (Image)

If $f : A \rightarrow B$ is a function, and $C \subseteq A$, then the image of C under f is the set:

$$f(C) = \{f(c) : c \in C\}.$$

Example

If $g : \mathbb{N} \rightarrow \mathbb{R}$ is defined by $g(x) = (-1)^x$, and E is the collection of even naturals, then

- $\text{codom}(g) =$
- $\text{ran}(g) =$
- $g(E) =$

Image of a set

Definition (Image)

If $f : A \rightarrow B$ is a function, and $C \subseteq A$, then the image of C under f is the set:

$$f(C) = \{f(c) : c \in C\}.$$

Example

If $g : \mathbb{N} \rightarrow \mathbb{R}$ is defined by $g(x) = (-1)^x$, and E is the collection of even naturals, then

- $\text{codom}(g) = \mathbb{R}$
- $\text{ran}(g) =$
- $g(E) =$

Image of a set

Definition (Image)

If $f : A \rightarrow B$ is a function, and $C \subseteq A$, then the image of C under f is the set:

$$f(C) = \{f(c) : c \in C\}.$$

Example

If $g : \mathbb{N} \rightarrow \mathbb{R}$ is defined by $g(x) = (-1)^x$, and E is the collection of even naturals, then

- $\text{codom}(g) = \mathbb{R}$
- $\text{ran}(g) = \{-1, 1\}$
- $g(E) =$

Image of a set

Definition (Image)

If $f : A \rightarrow B$ is a function, and $C \subseteq A$, then the image of C under f is the set:

$$f(C) = \{f(c) : c \in C\}.$$

Example

If $g : \mathbb{N} \rightarrow \mathbb{R}$ is defined by $g(x) = (-1)^x$, and E is the collection of even naturals, then

- $\text{codom}(g) = \mathbb{R}$
- $\text{ran}(g) = \{-1, 1\}$
- $g(E) = \{1\}$

Observations

Propositions

If $f : A \rightarrow B$ is a function, and $C \subseteq A$, then

- ① $\text{ran}(f) \subseteq \text{codom}(f)$.
- ② $f(C) \subseteq \text{codom}(f)$
- ③ $f(C) \subseteq \text{ran}(f)$
- ④ $\text{ran}(f) = f(\text{dom}(f))$

Why use codomain?

Observation

It can be useful to use a wider codomain if you don't know the complete function ahead of time. Computing an exact range is often difficult in practice.

Why use codomain?

Observation

It can be useful to use a wider codomain if you don't know the complete function ahead of time. Computing an exact range is often difficult in practice.

Example

You want to define a function $\text{Country}(x)$ that takes as an input x a year in which the Olympics were held, and outputs the name of the country that won the most medals that year.

- $\text{codom}(\text{Country}) = \text{all countries in the world (including those that no longer exist)}$.
- $\text{ran}(\text{Country}) = \dots$

Why use codomain?

Observation

It can be useful to use a wider codomain if you don't know the complete function ahead of time. Computing an exact range is often difficult in practice.

Example

You want to define a function $\text{Country}(x)$ that takes as an input x a year in which the Olympics were held, and outputs the name of the country that won the most medals that year.

- $\text{codom}(\text{Country}) = \text{all countries in the world (including those that no longer exist)}$.
- $\text{ran}(\text{Country}) = \dots$ requires research to find out.

Reflection

- What are the key parts of a function?
- If a function is given to you as $f : A \rightarrow B$, what two features can you identify already?
- What is the difference between the codomain and range of a function?