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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 Check if a given relation is transitive, symmetric, or reflexive.
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Motivation

Motivation

Often things are equal in some ways, but different in others. Equivalence
relations capture this idea.

Example

The numbers 2
2 and 3

3 are different representations, but equivalent
amounts.

This image is used with permission from Pixabay.
https://pixabay.com/vectors/cup-kitchen-measure-measuring-161133/
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Definitions

Definition

A relation R on a set X is

Reflexive if (∀x ∈ X )[(x , x) ∈ R],

Symmetric if (∀x , y ∈ X )[(x , y) ∈ R =⇒ (y , x) ∈ R]

Transitive if (∀x , y , z ∈ X )[(x , y) ∈ R ∧ (y , z) ∈ R =⇒ (x , z) ∈ R]

A relation R is an equivalence relation if R is reflexive, symmetric, and
transitive.

Intuition: Equivalence relations capture some notion of “sameness”.

Negation

These properties are all universal properties. To show that a relation fails
one of the properties you need to produce a counterexample.
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Non-example 1

Non-example 1

Let X = R, R1 = {(x , y) ∈ R2 : x < y}.

Not reflexive. 1 ∈ R and (1, 1) /∈ R1 as 1 6< 1.

Not symmetric. (1, 2) ∈ R1 and (2, 1) /∈ R1 as 2 6< 1.

Transitive. Let (x , y) ∈ R1 and (y , z) ∈ R1. So x < y and y < z . So
x < z (by a property of <). So (x , z) ∈ R1.
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Non-example 2

Non-example 2

Let X = R, R2 = {(x , y) ∈ R2 : x ≤ y}.

Reflexive. Let x ∈ R. Note that x ≤ x , so (x , x) ∈ R2.

Not symmetric. Same reason as Example 1.
Transitive. Basically same reason as Example 1.
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Non-example 3

Non-example 3

Let X = Q, R3 = {(x , y) ∈ Q2 : |x − y | < 3}.

Reflexive. Let x ∈ Q. Note that |x − x | = |0| = 0 < 3, so (x , x) ∈ R3.

Symmetric. Let (x , y) ∈ R3. So |x − y | < 3, and since
|y − x | = | − (x − y)| = |x − y | we have |y − x | < 3. So (y , x) ∈ R3

Not Transitive. Note that |1− 3| = 2 < 3 and |3− 5| = 2 < 3 (so
(1, 3) ∈ R3 and (3, 5) ∈ R3) but |1− 5| = 4 6< 3, so (1, 5) /∈ R3.
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Examples

Example 1

Let X = Z, R = {(x , y) ∈ Z2 : |x | = |y |}.

Reflexive. Let x ∈ Z. Note that |x | = |x |, so (x , x) ∈ R.

Symmetric. Let (x , y) ∈ R. So |x | = |y |, and so |y | = |x |. So (y , x) ∈ R.

Transitive. Let (x , y) ∈ R and (y , z) ∈ R. So |x | = |y | and |y | = |z |.
Therefore |x | = |z |. So (x , z) ∈ R.

Lemma

If f : X → Y is a function, then R = {(x1, x2) ∈ X 2 : f (x1) = f (x2)} is a
relation on X .
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Examples

Trivial Examples

Let X be a set. We can always define the following two equivalence
relations:

Esingles = {(x , x) : x ∈ X}. (Very few points are related.)

Efull = X × X . (All points are related.)

For X = {1, 2, 3} we have Esingles (left) and Efull (right).

Prof Mike Pawliuk (UTM) Intro to Proofs June 4, 2020 9 / 12



Examples

Rational representations

Let X = Z× N and let E = {((p, q), (x , y)) : py = qx}.
Example. ((1, 2), (3, 6)) ∈ E as 1(6) = 2(3).

Intuition. ((p, q), (x , y)) ∈ E iff
p

q
=

x

y
.

Proposition

This is an equivalence relation.
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Proof of Proposition

Let X = Z× N and let E = {((p, q), (x , y)) : py = qx}.

Proof.

Reflexive and Symmetric are left as exercises for you.
Let ((p, q), (x , y)) ∈ E and ((x , y), (a, b)) ∈ E .

So py = qx and xb = ya.

Want ((p, q), (a, b)) ∈ E . (i.e. pb = qa).

Note

py = qx =⇒

pby = bxq Multiply by b

=⇒

pby = yaq As xb = ya

=⇒

pb = aq Cancel y as y ∈ N

So ((p, q), (a, b)) ∈ E .
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Reflection

To show that a relation is not an equivalence relation, what do you
have to show?

Make precise the idea that “Esingles is the smallest equivalence relation
on a set” and “Efull is the largest equivalence relation on a set”.

Where have you seen equivalence relations before (in this course, or in
other math courses)?
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