

Introduction to Proofs - Equivalence Classes

Prof Mike Pawliuk

UTM

June 9, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Identify the equivalence class that an element is in.
- ② Partition a space using equivalence classes.

Motivation

Equivalence relations are used to say when things are the same in some way. We put all the similar things into the equivalence class.

Motivation

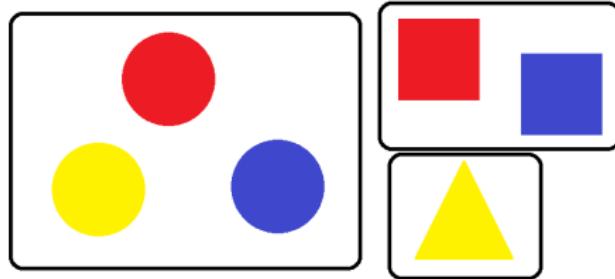
Motivation

Equivalence relations are used to say when things are the same in some way. We put all the similar things into the equivalence class.

Example

Let X be the set with these 6 coloured shapes, and let E be the equivalence relation “ x has the same shape as y ”.

It has 3 equivalence classes; one for each shape.



Definition

Definition (Equivalence class, representative)

Let E be an equivalence relation on a set X , and let $a \in X$. The equivalence class of a (with respect to E) is

$$[a] = \{x \in X : (a, x) \in E\}.$$

We also call a a representative for its equivalence class.

Note that $[a] \subseteq X$.

Definition

Definition (Equivalence class, representative)

Let E be an equivalence relation on a set X , and let $a \in X$. The equivalence class of a (with respect to E) is

$$[a] = \{x \in X : (a, x) \in E\}.$$

We also call a a representative for its equivalence class.

Note that $[a] \subseteq X$.

Example 1

Let $X = \mathbb{Z}$ and let $E = \{(x, y) \in \mathbb{Z}^2 : |x| = |y|\}$.

- ① $[-1] = \{-1, 1\} = [1]$
- ② $[2] = \{2, -2\} = [-2]$
- ③ $[0] = \{0\}$

Example 2

Example 2

Let $X = \mathbb{Z} \times \mathbb{N}$, and let $E = \{((p, q), (x, y)) : py = xq\}$.

- $[(1, 2)] = \{(1, 2), (2, 4), (3, 6), \dots\}$
- $[(0, 1)] = \{(0, n) : n \in \mathbb{N}\}$

Example 3

Example 3

Let $X = \mathbb{Z}$ and let $x \sim y$ if and only if $y - x$ is a multiple of 4.

Exercise. List out all elements of the following equivalence classes:

- $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\}$
- $[1] =$
- $[2] =$
- $[3] =$
- $[4] =$

Example 3

Example 3

Let $X = \mathbb{Z}$ and let $x \sim y$ if and only if $y - x$ is a multiple of 4.

Exercise. List out all elements of the following equivalence classes:

- $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\}$
- $[1] = \{\dots, -7, -3, 1, 5, 9, \dots\}$
- $[2] =$
- $[3] =$
- $[4] =$

Example 3

Example 3

Let $X = \mathbb{Z}$ and let $x \sim y$ if and only if $y - x$ is a multiple of 4.

Exercise. List out all elements of the following equivalence classes:

- $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\}$
- $[1] = \{\dots, -7, -3, 1, 5, 9, \dots\}$
- $[2] = \{\dots, -6, -2, 2, 6, 10, \dots\}$
- $[3] =$
- $[4] =$

Example 3

Example 3

Let $X = \mathbb{Z}$ and let $x \sim y$ if and only if $y - x$ is a multiple of 4.

Exercise. List out all elements of the following equivalence classes:

- $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\}$
- $[1] = \{\dots, -7, -3, 1, 5, 9, \dots\}$
- $[2] = \{\dots, -6, -2, 2, 6, 10, \dots\}$
- $[3] = \{\dots, -5, -1, 3, 7, 11, \dots\}$
- $[4] =$

Example 3

Example 3

Let $X = \mathbb{Z}$ and let $x \sim y$ if and only if $y - x$ is a multiple of 4.

Exercise. List out all elements of the following equivalence classes:

- $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\}$
- $[1] = \{\dots, -7, -3, 1, 5, 9, \dots\}$
- $[2] = \{\dots, -6, -2, 2, 6, 10, \dots\}$
- $[3] = \{\dots, -5, -1, 3, 7, 11, \dots\}$
- $[4] = \{\dots, -4, 0, 4, 8, 12, \dots\}$

Example 3

Example 3

Let $X = \mathbb{Z}$ and let $x \sim y$ if and only if $y - x$ is a multiple of 4.

Exercise. List out all elements of the following equivalence classes:

- $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\}$
- $[1] = \{\dots, -7, -3, 1, 5, 9, \dots\}$
- $[2] = \{\dots, -6, -2, 2, 6, 10, \dots\}$
- $[3] = \{\dots, -5, -1, 3, 7, 11, \dots\}$
- $[4] = \{\dots, -4, 0, 4, 8, 12, \dots\}$

Reflect: What do you notice about these equivalence classes?

Example 3

Example 3

Let $X = \mathbb{Z}$ and let $x \sim y$ if and only if $y - x$ is a multiple of 4.

Exercise. List out all elements of the following equivalence classes:

- $[0] = \{\dots, -8, -4, 0, 4, 8, \dots\}$
- $[1] = \{\dots, -7, -3, 1, 5, 9, \dots\}$
- $[2] = \{\dots, -6, -2, 2, 6, 10, \dots\}$
- $[3] = \{\dots, -5, -1, 3, 7, 11, \dots\}$
- $[4] = \{\dots, -4, 0, 4, 8, 12, \dots\}$

Reflect: What do you notice about these equivalence classes?

- Every integer is in at least one equivalence class. (Reflexivity.)
- If an integer is in two equivalence classes, then those classes are the same.

Partition theorem

Theorem

Let E be an equivalence relation on the set X . Let $x, y \in X$.

$$[x] \cap [y] \neq \emptyset \implies [x] = [y].$$

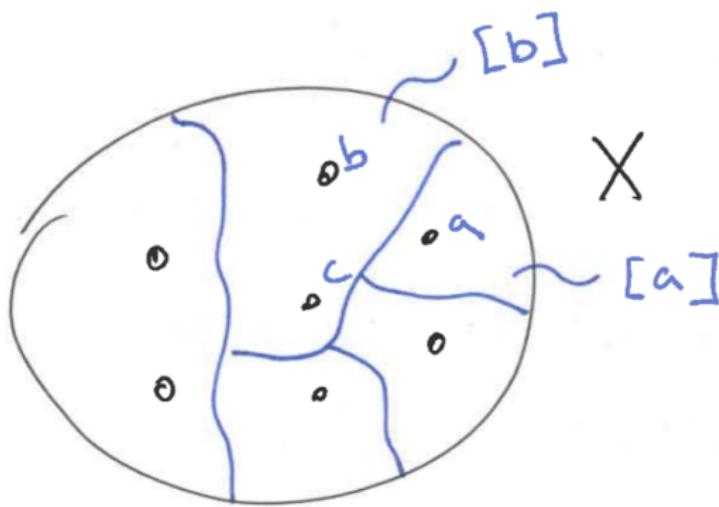
Partition theorem

Theorem

Let E be an equivalence relation on the set X . Let $x, y \in X$.

$$[x] \cap [y] \neq \emptyset \implies [x] = [y].$$

Idea. This theorem says that E “partitions X ”.



Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

Proof.

Assume $[x] \cap [y] \neq \emptyset$.

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

\subseteq Let $a \in [x]$.

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

\subseteq Let $a \in [x]$. So $(x, a) \in E$.

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

\subseteq Let $a \in [x]$. So $(x, a) \in E$. **Want.** $a \in [y]$, i.e. $(y, a) \in E$.

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

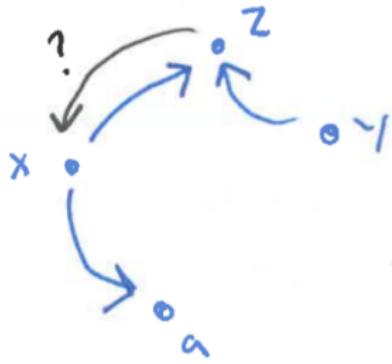
Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

\subseteq Let $a \in [x]$. So $(x, a) \in E$. **Want.** $a \in [y]$, i.e. $(y, a) \in E$.



Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

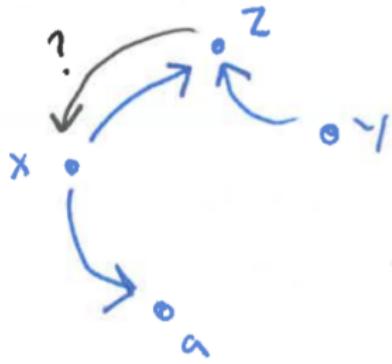
Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

\subseteq Let $a \in [x]$. So $(x, a) \in E$. **Want.** $a \in [y]$, i.e. $(y, a) \in E$.



Note that $(x, z) \in E \implies (z, x) \in E$ by symmetry of E .

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

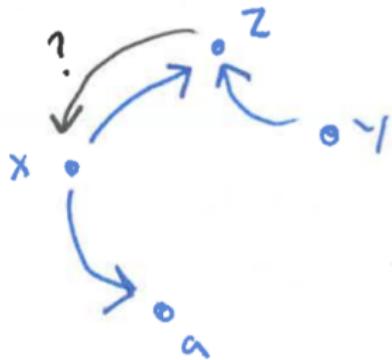
Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

\subseteq Let $a \in [x]$. So $(x, a) \in E$. **Want.** $a \in [y]$, i.e. $(y, a) \in E$.



Note that $(x, z) \in E \implies (z, x) \in E$ by symmetry of E .

Since $(y, z) \in E$ and $(z, x) \in E$ and $(x, a) \in E$ we get $(y, a) \in E$ (by transitivity of E twice).

Partition theorem proof

$$[x] \cap [y] \neq \emptyset \implies [x] = [y]$$

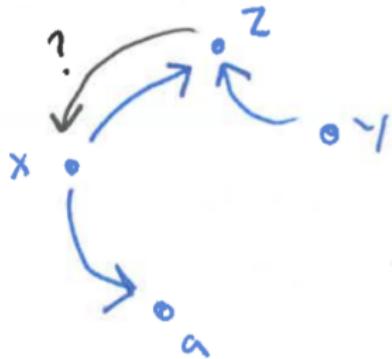
Proof.

Assume $[x] \cap [y] \neq \emptyset$. So there is a $z \in X$ such that $z \in [x]$ and $z \in [y]$.

So $(x, z) \in E$ and $(y, z) \in E$.

Want: $[x] = [y]$, which we will show using double subset.

\subseteq Let $a \in [x]$. So $(x, a) \in E$. **Want.** $a \in [y]$, i.e. $(y, a) \in E$.



Note that $(x, z) \in E \implies (z, x) \in E$ by symmetry of E .

Since $(y, z) \in E$ and $(z, x) \in E$ and $(x, a) \in E$ we get $(y, a) \in E$ (by transitivity of E twice).

The other subset direction is similar.

Reflection

- What is the type of an equivalence class? (Is it a point, a set, a pair of points, a collection of pairs, or something else?)
- How does the relation $x \sim y$ iff “ $y - x$ is a multiple of 4” partition the set \mathbb{Z} ?
- What is the standard (sometimes called canonical) representative we take for the equivalence class $[(12, 15)]$ for the relation $(p, q) \sim (x, y)$ iff $py = xq$ on the set $\mathbb{Z} \times \mathbb{N}$.