

Introduction to Proofs - Inequalities - Axioms

Prof Mike Pawliuk

UTM

June 11, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① State the order axioms.
- ② Prove a basic fact using the order axioms.
- ③ Avoid common pitfalls with inequalities.

Motivation

Motivation

We would like to prove a variety of inequalities. How can we do that in a rigorous way?

Definitions

We say that a real number x is

- ① positive, if $0 < x$.
- ② negative, if $x < 0$.
- ③ non-negative, if x is not negative, i.e. $0 \leq x$.

Order Axioms

Order Axioms

Let $a, b, c, d \in \mathbb{R}$.

- ① If $a < b$ and $0 < c$, then $ac < bc$.
- ② If $a < b$, then $-b < -a$.
- ③ $a^2 \geq 0$
- ④ If $a < b$ and $c < d$, then $a + c < b + d$.
- ⑤ If $a \geq 0$ then there is a unique non-negative number \sqrt{a} so that $(\sqrt{a})^2 = a$.
- ⑥ If $0 < a < b$, then $0 < \frac{1}{b} < \frac{1}{a}$.
- ⑦ If $a < b$ and $b < c$, then $a < c$.

Order Axioms

Order Axioms

Let $a, b, c, d \in \mathbb{R}$.

- ① If $a < b$ and $0 < c$, then $ac < bc$.
- ② If $a < b$, then $-b < -a$.
- ③ $a^2 \geq 0$
- ④ If $a < b$ and $c < d$, then $a + c < b + d$.
- ⑤ If $a \geq 0$ then there is a unique non-negative number \sqrt{a} so that $(\sqrt{a})^2 = a$.
- ⑥ If $0 < a < b$, then $0 < \frac{1}{b} < \frac{1}{a}$.
- ⑦ If $a < b$ and $b < c$, then $a < c$.

Exercise. Show that Axiom 4 is stronger than Axiom 2 (and so we only need to include Axiom 4 on this list). That is, show that you can deduce Axiom 4 from Axiom 2.

Consequences

Facts

- ① If $0 < a < b$, then $a^2 < b^2$.
- ② If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Consequences

Facts

- ① If $0 < a < b$, then $a^2 < b^2$.
- ② If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (1).

Assume $0 < a < b$.

Consequences

Facts

- ① If $0 < a < b$, then $a^2 < b^2$.
- ② If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (1).

Assume $0 < a < b$.

By Axiom 1 (using $a > 0$) we have $a^2 < ba$.

Consequences

Facts

- ① If $0 < a < b$, then $a^2 < b^2$.
- ② If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (1).

Assume $0 < a < b$.

By Axiom 1 (using $a > 0$) we have $a^2 < ba$.

By Axiom 1 (using $b > 0$) we have $ab < b^2$.

Consequences

Facts

- ① If $0 < a < b$, then $a^2 < b^2$.
- ② If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (1).

Assume $0 < a < b$.

By Axiom 1 (using $a > 0$) we have $a^2 < ba$.

By Axiom 1 (using $b > 0$) we have $ab < b^2$.

Since $ab = ba$, by Axiom 7 we have $a^2 < b^2$. □

Consequences

If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (2).

Assume $0 < a < b$.

Consequences

If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (2).

Assume $0 < a < b$.

By Axiom 4, $0 < b - a$

Consequences

If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (2).

Assume $0 < a < b$.

By Axiom 4, $0 < b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a})$. [*]

Consequences

If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (2).

Assume $0 < a < b$.

By Axiom 4, $0 < b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a})$. $[*]$

Note $0 < \frac{1}{\sqrt{b} + \sqrt{a}}$.

Consequences

If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (2).

Assume $0 < a < b$.

By Axiom 4, $0 < b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a})$. $[*]$

Note $0 < \frac{1}{\sqrt{b} + \sqrt{a}}$.

Using Axiom 1 on $(*)$ with $c = \frac{1}{\sqrt{b} + \sqrt{a}}$ gives

$$0 \cdot \frac{1}{\sqrt{b} + \sqrt{a}} < (\sqrt{b} - \sqrt{a}) \left(\sqrt{b} + \sqrt{a} \right) \frac{1}{\sqrt{b} + \sqrt{a}}$$

Consequences

If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (2).

Assume $0 < a < b$.

By Axiom 4, $0 < b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a})$. $[*]$

Note $0 < \frac{1}{\sqrt{b} + \sqrt{a}}$.

Using Axiom 1 on $(*)$ with $c = \frac{1}{\sqrt{b} + \sqrt{a}}$ gives

$$0 \cdot \frac{1}{\sqrt{b} + \sqrt{a}} < (\sqrt{b} - \sqrt{a}) \left(\sqrt{b} + \sqrt{a} \right) \frac{1}{\sqrt{b} + \sqrt{a}}$$

So $0 < \sqrt{b} - \sqrt{a}$, and by Axiom 4, $\sqrt{a} < \sqrt{b}$. □

Consequences

If $0 < a < b$, then $\sqrt{a} < \sqrt{b}$.

Proof of (2).

Assume $0 < a < b$.

By Axiom 4, $0 < b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a})$. $[*]$

Note $0 < \frac{1}{\sqrt{b} + \sqrt{a}}$.

Using Axiom 1 on $(*)$ with $c = \frac{1}{\sqrt{b} + \sqrt{a}}$ gives

$$0 \cdot \frac{1}{\sqrt{b} + \sqrt{a}} < (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a}) \frac{1}{\sqrt{b} + \sqrt{a}}$$

So $0 < \sqrt{b} - \sqrt{a}$, and by Axiom 4, $\sqrt{a} < \sqrt{b}$. □

Exercise. Use the axioms to justify the “note” we made without proof.

Exercise

- ① If possible, use the main idea from the proof of fact 1 to prove fact 2.
- ② If possible, use the main idea from the proof of fact 2 to prove fact 3.

Common mistakes

Exercise. Each of these are common mistakes. Explain the error that is being made, and how to correct it.

- ① If $a < b$, then $-2a < -2b$.
- ② Since $0 < 2 < 100$, we have $\frac{1}{2} < \frac{1}{100}$.
- ③ If x is a real number, then since $2 < 3$ we have $2x < 3x$.
- ④ If $a < b$, then $a^2 < b^2$.

Common mistakes

Exercise. Each of these are common mistakes. Explain the error that is being made, and how to correct it.

- ① If $a < b$, then $-2a < -2b$.

Error: Multiplying by a negative switches the order of the inequality.
(Axiom 2)

- ② Since $0 < 2 < 100$, we have $\frac{1}{2} < \frac{1}{100}$.

- ③ If x is a real number, then since $2 < 3$ we have $2x < 3x$.

- ④ If $a < b$, then $a^2 < b^2$.

Common mistakes

Exercise. Each of these are common mistakes. Explain the error that is being made, and how to correct it.

- ① If $a < b$, then $-2a < -2b$.

Error: Multiplying by a negative switches the order of the inequality. (Axiom 2)

- ② Since $0 < 2 < 100$, we have $\frac{1}{2} < \frac{1}{100}$.

Error: Taking the reciprocal of two positive numbers reverses the inequality. (Axiom 6)

- ③ If x is a real number, then since $2 < 3$ we have $2x < 3x$.

- ④ If $a < b$, then $a^2 < b^2$.

Common mistakes

Exercise. Each of these are common mistakes. Explain the error that is being made, and how to correct it.

- ① If $a < b$, then $-2a < -2b$.

Error: Multiplying by a negative switches the order of the inequality. (Axiom 2)

- ② Since $0 < 2 < 100$, we have $\frac{1}{2} < \frac{1}{100}$.

Error: Taking the reciprocal of two positive numbers reverses the inequality. (Axiom 6)

- ③ If x is a real number, then since $2 < 3$ we have $2x < 3x$.

Error: Since x can be any real number, it could also be negative, and that will change the inequality. (Axiom 2). Break up into 3 cases:

$x > 0, x = 0, x < 0$.

- ④ If $a < b$, then $a^2 < b^2$.

Common mistakes

Exercise. Each of these are common mistakes. Explain the error that is being made, and how to correct it.

- ① If $a < b$, then $-2a < -2b$.

Error: Multiplying by a negative switches the order of the inequality. (Axiom 2)

- ② Since $0 < 2 < 100$, we have $\frac{1}{2} < \frac{1}{100}$.

Error: Taking the reciprocal of two positive numbers reverses the inequality. (Axiom 6)

- ③ If x is a real number, then since $2 < 3$ we have $2x < 3x$.

Error: Since x can be any real number, it could also be negative, and that will change the inequality. (Axiom 2). Break up into 3 cases:
 $x > 0, x = 0, x < 0$.

- ④ If $a < b$, then $a^2 < b^2$.

Error: Fact 1 requires both a, b to be positive. Can you see why?

Reflection

- What is the difference between an order axiom and a fact?
- Why did we include Axiom 2 on the list of order axioms if it follows from Axiom 4?
- What are some common misunderstandings about inequalities?
- Can a theorem have multiple different proofs?