

Introduction to Proofs - Triangle Inequality

Prof Mike Pawliuk

UTM

June 11, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Apply the absolute value function in various contexts (algebraically and geometrically).
- ② Relate/distinguish problem solving and rough work to a proof.
- ③ Break up a sum using the triangle inequality.

Motivation

“The sum of any two sides of a triangle is always greater or equal to the third side.”

Motivation

The triangle inequality is one of the two important inequalities we see in this course.

We will understand it geometrically and algebraically.

Absolute value

Definition (Absolute value)

If x is a rel number, then

$$|x| = \begin{cases} x & x \geq 0 \\ -x & x < 0 \end{cases}$$

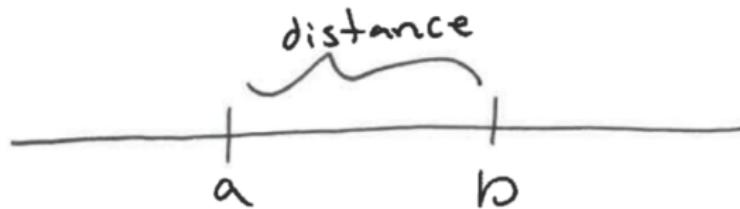
Absolute value

Definition (Absolute value)

If x is a rel number, then

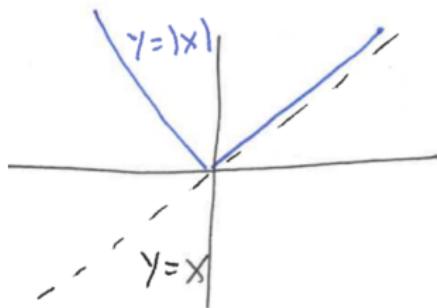
$$|x| = \begin{cases} x & x \geq 0 \\ -x & x < 0 \end{cases}$$

Special case. $|a - b|$ is the distance between a and b .



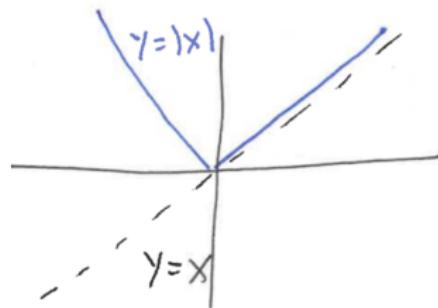
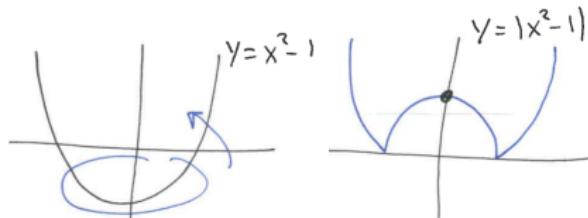
More visualizations of absolute value

This picture shows us the inequality: for all real x , $x \leq |x|$.



More visualizations of absolute value

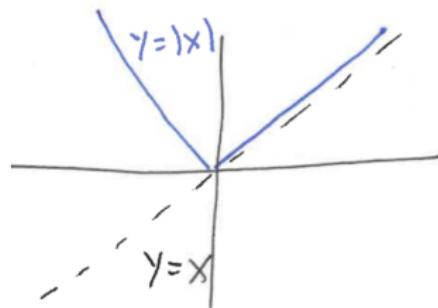
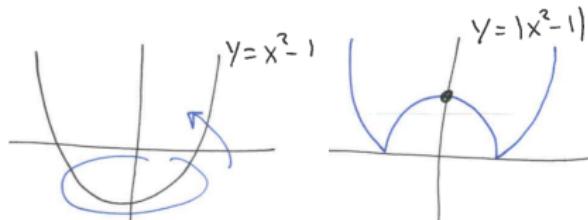
This picture shows us the inequality: for all real x , $x \leq |x|$.



What is the max value of $|x^2 - 1|$ when $|x| \leq 1$?

More visualizations of absolute value

This picture shows us the inequality: for all real x , $x \leq |x|$.



What is the max value of $|x^2 - 1|$ when $|x| \leq 1$? At $x = 0$, $|x^2 - 1| = 1$.

Basic Facts about absolute value

Facts

Let $x, y \in \mathbb{R}$.

- ① $x^2 = |x|^2$
- ② $\sqrt{x^2} = |x|$
- ③ $x \leq |x|$
- ④ $|xy| = |x||y|$

Basic Facts about absolute value

Facts

Let $x, y \in \mathbb{R}$.

- ① $x^2 = |x|^2$
- ② $\sqrt{x^2} = |x|$
- ③ $x \leq |x|$
- ④ $|xy| = |x||y|$

Special case of (4). If $y = -1$, get $|-x| = |x||-1| = |x|$.

Basic Facts about absolute value

Facts

Let $x, y \in \mathbb{R}$.

- ① $x^2 = |x|^2$
- ② $\sqrt{x^2} = |x|$
- ③ $x \leq |x|$
- ④ $|xy| = |x||y|$

Special case of (4). If $y = -1$, get $|-x| = |x||-1| = |x|$.

Special case of this. $|b - a| = |-(a - b)| = |a - b|$.

Basic Facts about absolute value

Facts

Let $x, y \in \mathbb{R}$.

- ① $x^2 = |x|^2$
- ② $\sqrt{x^2} = |x|$
- ③ $x \leq |x|$
- ④ $|xy| = |x||y|$

Special case of (4). If $y = -1$, get $|-x| = |x||-1| = |x|$.

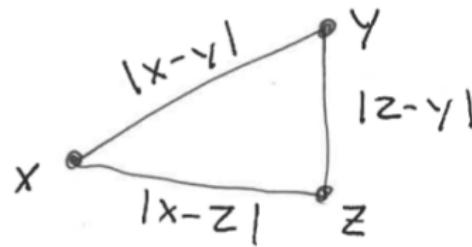
Special case of this. $|b - a| = |-(a - b)| = |a - b|$.

The distance from a to b is the same as the distance from b to a .

Motivation for Triangle Inequality

$$\begin{aligned}|x - y| &= |(x - z) + (z - y)| \\ &\leq |x - z| + |z - y|\end{aligned}$$

Intuition. Direct routes are shorter than detours (to z).



Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Rough work / Ugly garbage

$$|x + y| \leq |x| + |y|$$

Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Rough work / Ugly garbage

$$\begin{aligned}|x + y| &\leq |x| + |y| \\ \implies |x + y|^2 &\leq (|x| + |y|)^2\end{aligned}$$

Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Rough work / Ugly garbage

$$|x + y| \leq |x| + |y|$$

$$\implies |x + y|^2 \leq (|x| + |y|)^2$$

$$\implies (x + y)^2 \leq |x|^2 + 2|x||y| + |y|^2$$

Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Rough work / Ugly garbage

$$\begin{aligned}|x + y| &\leq |x| + |y| \\ \implies |x + y|^2 &\leq (|x| + |y|)^2 \\ \implies (x + y)^2 &\leq |x|^2 + 2|x||y| + |y|^2 \\ \implies x^2 + 2xy + y^2 &\leq |x|^2 + 2|xy| + |y|^2\end{aligned}$$

Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Rough work / Ugly garbage

$$\begin{aligned}|x + y| &\leq |x| + |y| \\ \implies |x + y|^2 &\leq (|x| + |y|)^2 \\ \implies (x + y)^2 &\leq |x|^2 + 2|x||y| + |y|^2 \\ \implies x^2 + 2xy + y^2 &\leq |x|^2 + 2|xy| + |y|^2 \\ \implies 2xy &\leq 2|xy|\end{aligned}$$

Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Rough work / Ugly garbage

$$\begin{aligned}|x + y| &\leq |x| + |y| \\ \implies |x + y|^2 &\leq (|x| + |y|)^2 \\ \implies (x + y)^2 &\leq |x|^2 + 2|x||y| + |y|^2 \\ \implies x^2 + 2xy + y^2 &\leq |x|^2 + 2|xy| + |y|^2 \\ \implies 2xy &\leq 2|xy| \\ \implies xy &\leq |xy|\end{aligned}$$

Triangle Inequality - Rough work

Theorem (Triangle Inequality)

For all $a, b \in \mathbb{R}$, $|a + b| \leq |a| + |b|$.

Rough work / Ugly garbage

$$\begin{aligned}|x + y| &\leq |x| + |y| \\ \implies |x + y|^2 &\leq (|x| + |y|)^2 \\ \implies (x + y)^2 &\leq |x|^2 + 2|x||y| + |y|^2 \\ \implies x^2 + 2xy + y^2 &\leq |x|^2 + 2|xy| + |y|^2 \\ \implies 2xy &\leq 2|xy| \\ \implies xy &\leq |xy| \leftarrow \text{This is the basic fact we will start from.}\end{aligned}$$

Proof of Triangle inequality

Proof.

Let $x, y \in \mathbb{R}$.

Note that $xy \leq |xy|$ by Fact 3.

So $2xy \leq 2|xy| = 2|x||y|$.

Since, by Fact 1, $x^2 = |x|^2$ and $y^2 = |y|^2$ we get

$$x^2 + 2xy + y^2 \leq |x|^2 + 2|xy| + |y|^2.$$

Factoring gives $|x + y|^2 \leq (|x| + |y|)^2$. By Fact 2 of inequalities,

$|x + y| \leq ||x| + |y||$.

Note that $||x| + |y|| = |x| + |y|$, since $|x| \geq 0, |y| \geq 0$ and $|x| + |y| \geq 0$.

So $|x + y| \leq |x| + |y|$. □

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Proof.

Solution Use the Triangle inequality.

$$|x^5 - 2x - 5| = |x^5 + (-2x - 5)|$$

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Proof.

Solution Use the Triangle inequality.

$$\begin{aligned}|x^5 - 2x - 5| &= |x^5 + (-2x - 5)| \\ &\leq |x^5| + |-2x - 5|\end{aligned}\quad \text{By Triangle ineq}$$

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Proof.

Solution Use the Triangle inequality.

$$\begin{aligned}|x^5 - 2x - 5| &= |x^5 + (-2x - 5)| \\&\leq |x^5| + |-2x - 5| && \text{By Triangle ineq} \\&= |x^5| + |2x + 5| && |y| = |-y|\end{aligned}$$

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Proof.

Solution Use the Triangle inequality.

$$\begin{aligned}|x^5 - 2x - 5| &= |x^5 + (-2x - 5)| \\&\leq |x^5| + |-2x - 5| && \text{By Triangle ineq} \\&= |x^5| + |2x + 5| && |y| = |-y| \\&\leq |x^5| + |2x| + |5| && \text{By Triangle ineq}\end{aligned}$$

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Proof.

Solution Use the Triangle inequality.

$$\begin{aligned}|x^5 - 2x - 5| &= |x^5 + (-2x - 5)| \\&\leq |x^5| + |-2x - 5| && \text{By Triangle ineq} \\&= |x^5| + |2x + 5| && |y| = |-y| \\&\leq |x^5| + |2x| + |5| && \text{By Triangle ineq} \\&= |x|^5 + 2|x| + 5\end{aligned}$$

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Proof.

Solution Use the Triangle inequality.

$$\begin{aligned}|x^5 - 2x - 5| &= |x^5 + (-2x - 5)| \\&\leq |x^5| + |-2x - 5| && \text{By Triangle ineq} \\&= |x^5| + |2x + 5| && |y| = |-y| \\&\leq |x^5| + |2x| + |5| && \text{By Triangle ineq} \\&= |x|^5 + 2|x| + 5 \\&\leq 2^5 + 2 \cdot 2 + 5 = 41 && \text{since } |x| \leq 2\end{aligned}$$

Bounding argument

Example

Find an M so that $|x^5 - 2x - 5| \leq M$ for all $|x| \leq 2$.

Proof.

Solution Use the Triangle inequality.

$$\begin{aligned}|x^5 - 2x - 5| &= |x^5 + (-2x - 5)| \\&\leq |x^5| + |-2x - 5| && \text{By Triangle ineq} \\&= |x^5| + |2x + 5| && |y| = |-y| \\&\leq |x^5| + |2x| + |5| && \text{By Triangle ineq} \\&= |x|^5 + 2|x| + 5 \\&\leq 2^5 + 2 \cdot 2 + 5 = 41 && \text{since } |x| \leq 2\end{aligned}$$

So take $M = 41$.

Reflection

- What's the value in understanding the absolute value function geometrically as well as algebraically?
- How is the triangle inequality related to triangles?
- How come Desmos tells us that $|x^5 - 2x - 5| \leq 33$ on the interval $-2 \leq x \leq 2$, but we got an answer of 41?