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Learning Objectives (for this video)

By the end of this video, participants should be able to:

@ Compute the range of a rational function f : R — R, and prove that
it is correct.
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Now that we are able to manipulate inequalities, we return to functions to
compute ranges of rational functions. These functions often show up in
calculus, but we will make these computations without calculus.
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Let f : A — B be a function, and C C A.
e dom(f) = A,
e codom(f) = B,
e ran(f) = {f(a):a € A},
e Image of C under f is {f(c):c e C}.
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Let f : A — B be a function, and C C A.
e dom(f) = A,
e codom(f) = B,
e ran(f) = {f(a):a € A},
e Image of C under f is {f(c):c e C}.

Example

Let f:{1,2,3} — R be defined by f(1) =1,f(2) =2 and f(3) = 1. and
let C={1,3}.
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Let f : A — B be a function, and C C A.
e dom(f) = A,
e codom(f) = B,
e ran(f) = {f(a):a € A},
e Image of C under f is {f(c):c e C}.

Example

Let f:{1,2,3} — R be defined by f(1) =1,f(2) =2 and f(3) = 1. and
let C={1,3}.

e dom(f) = {1,2,3},

e codom(f) =R,

o ran(f) ={f(a): ac A} = {f(1),1(2),f(3)} = {1,2},

@ Image of C under fis {f(c):ce C} ={f(1),f(3)} = {1}.
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2. Warm up example

Let f : Z — R be defined by f(x) = |x — 1| + 1.
Prove that ran(f) = N.
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2. Warm up example

Let f : Z — R be defined by f(x) = |x — 1| + 1.
Prove that ran(f) = N.

Ursula's claim: “Absolute values are always non-negative, and |x — 1| +1
is an integer if x is, so f(x) is a natural number.”
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2. Warm up example

Let f : Z — R be defined by f(x) = |x — 1| + 1.
Prove that ran(f) = N.

Ursula's claim: “Absolute values are always non-negative, and |x — 1| +1
is an integer if x is, so f(x) is a natural number.”

Is this a complete proof?
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2. Warm up example

Let f : Z — R be defined by f(x) = |x — 1| + 1.
Prove that ran(f) = N.

Ursula's claim: “Absolute values are always non-negative, and |x — 1| +1
is an integer if x is, so f(x) is a natural number.”

Is this a complete proof?

No. It only shows that ran(f) C N.
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2. Warm up example

Let f : Z — R be defined by f(x) = |x — 1| + 1.
Prove that ran(f) = N.

Ursula's claim: “Absolute values are always non-negative, and |x — 1| +1
is an integer if x is, so f(x) is a natural number.”

Is this a complete proof?
No. It only shows that ran(f) C N.

How do we know that N C ran(f)? In other words, how do we know
that every n € N can be written as |x — 1| + 1 for some x € Z?
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continued

Let f : Z — R be defined by f(x) =[x — 1| + 1.
Prove that ran(f) = N.

Suppose n € N. Let x = —(n—1) + 1.
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continued

Let f : Z — R be defined by f(x) =[x — 1| + 1.
Prove that ran(f) = N.

Suppose n € N. Let x = —(n—1) + 1.
@ Note that x € Z = dom(f).

@ Note that
fx)y=—-(h—-1)+1-1|+1=
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continued

Let f : Z — R be defined by f(x) =[x — 1| + 1.
Prove that ran(f) = N.

Suppose n € N. Let x = —(n—1) + 1.

@ Note that x € Z = dom(f).

@ Note that
fx)=|-(n—-1)+1-1+1=|—-(n—=1)|+1=n—-1+1=n

So n € ran(f).
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Proof strategy

Proof strategy for showing C = ran(f).

To show that C = ran(f) you need to show double subset.
@ ran(f) C C. This means showing that every f(x) is in C.

@ C Cran(f). This means that every ¢ € C can be written as
f(x) = c. It is your job to find one x that works.
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3. An example with a rational function

11
Let f : R — R, where f(x) = 14)-<—2 Show ran(f) = [—— —}
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3. An example with a rational function

11
Let f : R — R, where f(x) = 14)-<—2 Show ran(f) = [ ]
X

22

11
ran(f) C [— ] Let y € ran(f). So there is an x € R such that
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3. An example with a rational function

11
Let f : R — R, where f(x) = 14)-<—2 Show ran(f) = [ ]
X

22

11
ran(f) C [— ] Let y € ran(f). So there is an x € R such that

Note — (1+x)? <0< (1 - x)?

el
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3. An example with a rational function

11
Let f : R — R, where f(x) = 1_?—2 Show ran(f) = [ ]
X

22

11
ran(f) C [— ] Let y € ran(f). So there is an x € R such that

Note — (1+x)? <0< (1 - x)?
— —1—x2—2x§0§1—2x—i-x2
=

—

—
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3. An example with a rational function

11
Let f : R — R, where f(x) = 1_?—2 Show ran(f) = [ ]
X

22

11
ran(f) C [— ] Let y € ran(f). So there is an x € R such that

Note — (1+x)? <0< (1 - x)?
—1—x2—2x§0§1—2x—i-x2
—(1+x*) <2x<1+x°

el
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3. An example with a rational function

11
Let f : R — R, where f(x) = 1_?—2 Show ran(f) = [ ]
X

22

11
ran(f) C [— ] Let y € ran(f). So there is an x € R such that

Note — (1+x)? <0< (1 - x)?
—1—x2—2x§0§1—2x—i-x2
—(1+x*) <2x<1+x°

—1§1+X2§1 since 1/(14+x%) >0

el
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3. An example with a rational function

Let f : R — R, where f(x) =

;2. Show ran(f) = [ 1 1}

1+x 272

11
ran(f) C [— ] Let y € ran(f). So there is an x € R such that

Note — (1+x)? <0< (1 - x)?
—1—x2—2x§0§1—2x—i-x2
—(1+x*) <2x<1+x°

—
—
2x . 2
— —1< <1 since 1/(1+x°) >0
—

_1+X2_

1 X 1
- < =
2 7 14x27—2
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Example continued

IN

N =
—
+
X
N
IN
N =

b
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Example continued
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N
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Example continued
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Example continued
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. oo x 1
2 7 14+x272
277 72
11
:ye[‘z’z]

= y € ran(f).
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3. Example continued

11
[—2, 2] Cran(f)|Let y € [-3,3]. We need to find an x € R such that

f(x)=y.
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3. Example continued

11

[—2, 2] Cran(f)|Let y € [-3,3]. We need to find an x € R such that
f(x)=y.

Case 1. If y =0, then let x = 0. Note f(0) =0=y.
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3. Example continued

11

[—2, 2] Cran(f)|Let y € [-3,3]. We need to find an x € R such that

fx)=y.

Case 1. If y =0, then let x = 0. Note f(0) =0=y.

14 /1— 42

%. (Exercise. Show this is
Yy

Case 2. Suppose y # 0. Let x =

always a real number.)

10/11
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3. Example continued

11

[—2, 2] Cran(f)|Let y € [-3,3]. We need to find an x € R such that
f(x)=y.

Case 1. If y =0, then let x = 0. Note f(0) =0=y.

1+ /1 —4y2 (
2y '

Case 2. Suppose y # 0. Let x = Exercise. Show this is

always a real number.)
Note that this x is a solution to the following equation (by the quadratic

formula):

2 —x+y=0

Ll
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3. Example continued

11

[—2, 2] Cran(f)|Let y € [-3,3]. We need to find an x € R such that
f(x)=y.

Case 1. If y =0, then let x = 0. Note f(0) =0=y.

1+ /1 —4y2 (
2y '

Case 2. Suppose y # 0. Let x = Exercise. Show this is

always a real number.)
Note that this x is a solution to the following equation (by the quadratic

formula):

2 —x+y=0
— y(x*+1)=x
=

=
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3. Example continued

11

[—2, 2] Cran(f)|Let y € [-3,3]. We need to find an x € R such that
f(x)=y.

Case 1. If y =0, then let x = 0. Note f(0) =0=y.

1+ /1 —4y2 (
2y '

Case 2. Suppose y # 0. Let x = Exercise. Show this is

always a real number.)
Note that this x is a solution to the following equation (by the quadratic
formula):

2 —x+y=0

:>y(x2+1):x
X
— vy = = f(x).
Y 14+ x2 (x)

=
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3. Example continued

11

[—2, 2] Cran(f)|Let y € [-3,3]. We need to find an x € R such that
f(x)=y.

Case 1. If y =0, then let x = 0. Note f(0) =0=y.

1+ /1 —4y2 (
2y '

Case 2. Suppose y # 0. Let x = Exercise. Show this is

always a real number.)
Note that this x is a solution to the following equation (by the quadratic

formula):

yP—x+y=0
:>y(x2+1):x
:}y:

= y € ran(f).
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Reflection

@ What is the difference between showing ran(f) C C and showing

C Cran(f).
@ What role did the quadratic equation play in the previous example?
@ How would you have written up your explanation of the previous

example?
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