

Introduction to Proofs - Sum and Product notation

Prof Mike Pawliuk

UTM

July 9, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Write a sum/product in sigma/pi notation.
- ② Extract a sum/product from the sigma/pi notation.

Motivation

We want to express things like

$$1 + 2 + 3 + \dots + 100$$

in a more compact and precise way, without using “...”.

This will be especially useful in calculus and stats (e.g. Riemann sums).

1. Warm-up example

- ① Compute the following sums.
- ② Make a general conjecture.
- ③ Express your conjecture in precise mathematical language.

$$= 1$$

$$= 1 + 3$$

$$= 1 + 3 + 5$$

$$= 1 + 3 + 5 + 7$$

$$= 1 + 3 + 5 + 7 + 9$$

1. Warm-up example

- ① Compute the following sums.
- ② Make a general conjecture.
- ③ Express your conjecture in precise mathematical language.

$$1 = 1$$

$$4 = 1 + 3$$

$$9 = 1 + 3 + 5$$

$$16 = 1 + 3 + 5 + 7$$

$$25 = 1 + 3 + 5 + 7 + 9$$

1. Warm-up example

- ① Compute the following sums.
- ② Make a general conjecture.
- ③ Express your conjecture in precise mathematical language.

$$1 = 1$$

$$4 = 1 + 3$$

$$9 = 1 + 3 + 5$$

$$16 = 1 + 3 + 5 + 7$$

$$25 = 1 + 3 + 5 + 7 + 9$$

Conjecture: The sum of consecutive odd numbers is a square.

1. Warm-up example

- ① Compute the following sums.
- ② Make a general conjecture.
- ③ Express your conjecture in precise mathematical language.

$$1 = 1$$

$$4 = 1 + 3$$

$$9 = 1 + 3 + 5$$

$$16 = 1 + 3 + 5 + 7$$

$$25 = 1 + 3 + 5 + 7 + 9$$

Conjecture: The sum of consecutive odd numbers is a square.

Conjecture: $(\forall n \in \mathbb{N})[1 + 3 + \dots + (2n - 3) + (2n - 1) = n^2]$

2. Making this precise: The math way

Definition (Sigma notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\sum_{i=1}^n a_i =$$

2. Making this precise: The math way

Definition (Sigma notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\sum_{i=1}^n a_i = a_1 +$$

2. Making this precise: The math way

Definition (Sigma notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\sum_{i=1}^n a_i = a_1 + a_2 +$$

2. Making this precise: The math way

Definition (Sigma notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\sum_{i=1}^n a_i = a_1 + a_2 + a_3 +$$

2. Making this precise: The math way

Definition (Sigma notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

3. Making this precise: The Python way

This is a for/while loop that computes $\sum_{i=1}^n (2i - 1)$

```
def total(n):
    """Give the sum of the odd numbers a_1 through a_n."""
    sum = 0
    for i in range(1, n+1):
        sum += 2*i - 1
    return sum

total(5)
>>> 25
```

4. Examples

$$\sum_{i=1}^3 i^2 =$$

$$\sum_{k=1}^3 k =$$

$$\sum_{i=-2}^3 i^2 =$$

4. Examples

$$\sum_{i=1}^3 i^2 = 1^2 + 2^2 + 3^2 = 14$$

$$\sum_{k=1}^3 k =$$

$$\sum_{i=-2}^3 i^2 =$$

4. Examples

$$\sum_{i=1}^3 i^2 = 1^2 + 2^2 + 3^2 = 14$$

$$\sum_{k=1}^3 k = 1 + 2 + 3 = 6$$

$$\sum_{i=-2}^3 i^2 =$$

4. Examples

$$\sum_{i=1}^3 i^2 = 1^2 + 2^2 + 3^2 = 14$$

$$\sum_{k=1}^3 k = 1 + 2 + 3 = 6$$

$$\sum_{i=-2}^3 i^2 = (-2)^2 + (-1)^2 + (0)^2 + (1)^2 + (2)^2 + (3)^2 = 19$$

5. Sum exercises

Compute

$$\sum_{i=2}^3 i =$$

$$\sum_{k=1}^4 2 =$$

$$\sum_{j=1}^2 \left(\sum_{i=1}^j i + j \right) =$$

$$=$$

5. Sum exercises

Compute

$$\sum_{i=2}^3 i = 2 + 3 = 5$$

$$\sum_{k=1}^4 2 =$$

$$\sum_{j=1}^2 \left(\sum_{i=1}^j i + j \right) =$$

$$=$$

5. Sum exercises

Compute

$$\sum_{i=2}^3 i = 2 + 3 = 5$$

$$\sum_{k=1}^4 2 = 2 + 2 + 2 + 2 = 8$$

$$\begin{aligned} \sum_{j=1}^2 \left(\sum_{i=1}^j i + j \right) &= \\ &= \end{aligned}$$

5. Sum exercises

Compute

$$\sum_{i=2}^3 i = 2 + 3 = 5$$

$$\sum_{k=1}^4 2 = 2 + 2 + 2 + 2 = 8$$

$$\begin{aligned} \sum_{j=1}^2 \left(\sum_{i=1}^j i + j \right) &= \left(\sum_{i=1}^1 i + 1 \right) + \left(\sum_{i=1}^2 i + 2 \right) \\ &= \end{aligned}$$

5. Sum exercises

Compute

$$\sum_{i=2}^3 i = 2 + 3 = 5$$

$$\sum_{k=1}^4 2 = 2 + 2 + 2 + 2 = 8$$

$$\begin{aligned}\sum_{j=1}^2 \left(\sum_{i=1}^j i + j \right) &= \left(\sum_{i=1}^1 i + 1 \right) + \left(\sum_{i=1}^2 i + 2 \right) \\ &= (1 + 1) + ((1 + 2) + (2 + 2)) = 9\end{aligned}$$

6. Sum Theorems

Let c be a real number, and n be a natural number.

$$\sum_{i=1}^n 1 =$$

$$\sum_{i=1}^n ca_i =$$

$$\sum_{i=1}^n (a_i + b_i) =$$

Exercise. If $m \leq n$ then

6. Sum Theorems

Let c be a real number, and n be a natural number.

$$\sum_{i=1}^n 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^n ca_i =$$

$$\sum_{i=1}^n (a_i + b_i) =$$

Exercise. If $m \leq n$ then

6. Sum Theorems

Let c be a real number, and n be a natural number.

$$\sum_{i=1}^n 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i$$

$$\sum_{i=1}^n (a_i + b_i) =$$

Exercise. If $m \leq n$ then

6. Sum Theorems

Let c be a real number, and n be a natural number.

$$\sum_{i=1}^n 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i$$

$$\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$$

Exercise. If $m \leq n$ then

6. Sum Theorems

Let c be a real number, and n be a natural number.

$$\sum_{i=1}^n 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i$$

$$\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$$

Exercise. If $m \leq n$ then

$$\sum_{i=m}^n 1 = n - m$$

6. Sum Theorems

Let c be a real number, and n be a natural number.

$$\sum_{i=1}^n 1 = 1 + 1 + \dots + 1 = n$$

$$\sum_{i=1}^n ca_i = c \sum_{i=1}^n a_i$$

$$\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$$

Exercise. If $m \leq n$ then

$$\sum_{i=m}^n 1 = n - m + 1$$

7. Product notation

Definition (Pi notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\prod_{i=1}^n a_i =$$

7. Product notation

Definition (Pi notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\prod_{i=1}^n a_i = a_1 \cdot a_2 \cdot a_3 \cdot \dots \cdot a_n$$

7. Product notation

Definition (Pi notation)

Let a_i be a real number (for $i \in \mathbb{N}$) and let $n \in \mathbb{N}$.

$$\prod_{i=1}^n a_i = a_1 \cdot a_2 \cdot a_3 \cdot \dots \cdot a_n$$

Example.

$$\prod_{i=1}^4 i = 1 \cdot 2 \cdot 3 \cdot 4 = 4!$$

8. Brain melting

Exercise. Write the for loop that produce product.

Convention

$$\sum_{i=1}^0 a_i = \quad (\text{empty sum})$$

$$\prod_{i=1}^0 a_i = \quad (\text{empty product})$$

8. Brain melting

Exercise. Write the for loop that produce product.

Convention

$$\sum_{i=1}^0 a_i = 0 \quad (\text{empty sum})$$

$$\prod_{i=1}^0 a_i = \quad (\text{empty product})$$

8. Brain melting

Exercise. Write the for loop that produce product.

Convention

$$\sum_{i=1}^0 a_i = 0 \quad (\text{empty sum})$$

$$\prod_{i=1}^0 a_i = 1 \quad (\text{empty product})$$

8. Brain melting

Exercise. Write the for loop that produce product.

Convention

$$\sum_{i=1}^0 a_i = 0 \quad (\text{empty sum})$$

$$\prod_{i=1}^0 a_i = 1 \quad (\text{empty product})$$

This is one reason why $0! = 1$ and $x^0 = 1$.

9. Product Theorems

Let c be a real number, and n be a natural number.

$$\prod_{i=1}^n 1 =$$

$$\prod_{i=1}^n ca_i =$$

$$\prod_{i=1}^n (a_i \cdot b_i) =$$

9. Product Theorems

Let c be a real number, and n be a natural number.

$$\prod_{i=1}^n 1 = 1$$

$$\prod_{i=1}^n ca_i =$$

$$\prod_{i=1}^n (a_i \cdot b_i) =$$

9. Product Theorems

Let c be a real number, and n be a natural number.

$$\prod_{i=1}^n 1 = 1$$

$$\prod_{i=1}^n ca_i = c^n \prod_{i=1}^n a_i$$

$$\prod_{i=1}^n (a_i \cdot b_i) =$$

9. Product Theorems

Let c be a real number, and n be a natural number.

$$\prod_{i=1}^n 1 = 1$$

$$\prod_{i=1}^n ca_i = c^n \prod_{i=1}^n a_i$$

$$\prod_{i=1}^n (a_i \cdot b_i) = \left(\prod_{i=1}^n a_i \right) \cdot \left(\prod_{i=1}^n b_i \right)$$

10. End boss

Compute

$$\sum_{i=1}^3 \left(\frac{\sum_{j=1}^i j}{\prod_{j=1}^i j} \right)$$

Reflection

- How do you recognize the dummy variable, the starting index, the end index and the terms you are adding?
- What are the similarities and differences between sum notation and product notation?
- How is sum notation like a for loop in programming?