

Introduction to Proofs - Induction - Intro

Prof Mike Pawliuk

UTM

July 9, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Identify a type of statement that could be proved by induction.
- ② Produce the structure of a proof by induction.

Motivation

Induction is a powerful proof technique that allows us to prove results about objects with self-similarity and symmetry.

We will see many variations on it in this course.

1. Warm-up

Assume that

$$1 + 3 + 5 + 7 + 9 + 11 + 13 = 7^2.$$

Then what is

$$(1 + 3 + 5 + 7 + 9 + 11 + 13) + 15 =$$

1. Warm-up

Assume that

$$1 + 3 + 5 + 7 + 9 + 11 + 13 = 7^2.$$

Then what is

$$(1 + 3 + 5 + 7 + 9 + 11 + 13) + 15 = 7^2 + 15 = 64 = 8^2$$

1. Warm-up

Assume that

$$1 + 3 + 5 + 7 + 9 + 11 + 13 = 7^2.$$

Then what is

$$(1 + 3 + 5 + 7 + 9 + 11 + 13) + 15 = 7^2 + 15 = 64 = 8^2$$

Observation. We can get from one equation to the next without re-computing everything.

2. Motivating question

Question. What is $1 + 3 + 5 + \dots + 99$?

$$1 = 1^2$$

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

2. Motivating question

Question. What is $1 + 3 + 5 + \dots + 99$?

$$1 = 1^2 \Rightarrow 2^2 = 4 = 1 + 3$$

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

2. Motivating question

Question. What is $1 + 3 + 5 + \dots + 99$?

$$\begin{aligned}1 &= 1^2 \Rightarrow 2^2 = 4 = 1 + 3 \\&\Rightarrow 3^2 = 9 = 1 + 3 + 5\end{aligned}$$

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

2. Motivating question

Question. What is $1 + 3 + 5 + \dots + 99$?

$$\begin{aligned}1 &= 1^2 \Rightarrow 2^2 = 4 = 1 + 3 \\&\Rightarrow 3^2 = 9 = 1 + 3 + 5 \\&\Rightarrow 4^2 = 16 = 1 + 3 + 5 + 7\end{aligned}$$

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

2. Motivating question

Question. What is $1 + 3 + 5 + \dots + 99$?

$$\begin{aligned}1 &= 1^2 \Rightarrow 2^2 = 4 = 1 + 3 \\&\Rightarrow 3^2 = 9 = 1 + 3 + 5 \\&\Rightarrow 4^2 = 16 = 1 + 3 + 5 + 7 \\&\dots \\&\Rightarrow 50^2 = 1 + 3 + 5 + \dots + 99\end{aligned}$$

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

2. Motivating question

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

We showed:

2. Motivating question

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

We showed: $P(1), P(2), P(3)$ and $P(4)$ are true. Also, the warm-up was $P(7) \implies P(8)$.

2. Motivating question

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

We showed: $P(1), P(2), P(3)$ and $P(4)$ are true. Also, the warm-up was $P(7) \implies P(8)$.

Idea of induction

- ① Show that $P(1)$ is true.
- ② Show that $P(n) \implies P(n + 1)$, for every $n \in \mathbb{N}$.

2. Motivating question

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$$

We showed: $P(1), P(2), P(3)$ and $P(4)$ are true. Also, the warm-up was $P(7) \implies P(8)$.

Idea of induction

- ① Show that $P(1)$ is true.
- ② Show that $P(n) \implies P(n + 1)$, for every $n \in \mathbb{N}$.

Important Note. Part 2 is not saying: $(\forall n \in \mathbb{N})[P(n)]$. It's saying "you can always move up one step".

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

Proof.

Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

Proof.

Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 3 + 5 + \dots + (2n - 1) = \underline{n^2}$ for this particular n .

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

Proof.

Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 3 + 5 + \dots + (2n - 1) = \underline{n^2}$ for this particular n .

Want $P(n + 1)$ to be true.

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

Proof.

Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 3 + 5 + \dots + (2n - 1) = \underline{n^2}$ for this particular n .

Want $P(n + 1)$ to be true.

$$\begin{aligned} 1 + 3 + 5 + \dots + (2n - 1) + (2(n + 1) - 1) \\ = \\ = \\ = \end{aligned}$$

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

Proof.

Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 3 + 5 + \dots + (2n - 1) = \underline{n^2}$ for this particular n .

Want $P(n + 1)$ to be true.

$$\begin{aligned}1 + 3 + 5 + \dots + (2n - 1) + (2(n + 1) - 1) \\= 1 + 3 + 5 + \dots + (2n - 1) + (2n + 2 - 1) \\= \\= \end{aligned}$$

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

Proof.

Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 3 + 5 + \dots + (2n - 1) = \underline{n^2}$ for this particular n .

Want $P(n + 1)$ to be true.

$$\begin{aligned}1 + 3 + 5 + \dots + (2n - 1) + (2(n + 1) - 1) \\= 1 + 3 + 5 + \dots + (2n - 1) + (2n + 2 - 1) \\= n^2 + (2n + 1) \\= \end{aligned}$$

2. Motivating Example

For a natural number n , let $P(n)$ be the statement:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2.$$

Theorem

$$\forall n \in \mathbb{N}(P(n) \implies P(n + 1)).$$

Proof.

Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 3 + 5 + \dots + (2n - 1) = \underline{n^2}$ for this particular n .

Want $P(n + 1)$ to be true.

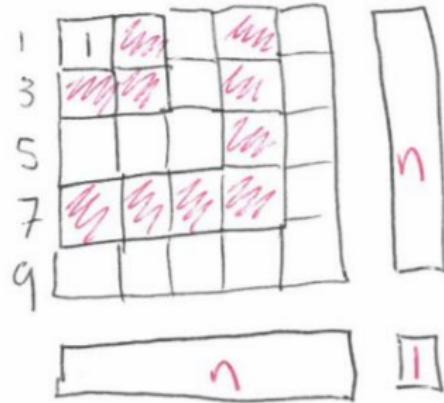
$$\begin{aligned}1 + 3 + 5 + \dots + (2n - 1) + (2(n + 1) - 1) \\= 1 + 3 + 5 + \dots + (2n - 1) + (2n + 2 - 1) \\= n^2 + (2n + 1) \\= (n + 1)^2 \quad \text{So } P(n + 1).\end{aligned}$$

2. Motivating Example

Here's a picture of what we just did:

Picture

$$5^2 = 1 + 3 + 5 + 7 + 9 .$$



$$(n=5)$$

$$(n+1)^2 = \underbrace{n^2}_{\text{old}} + \underbrace{2n+1}_{\text{new}} .$$

3. Mathematical Induction

Proof strategy (Regular induction)

To prove a statement of the form " $(\forall n \in \mathbb{N})[P(n)]$ "

You can show that:

- ① $P(1)$ is true, and
- ② $\forall n \in \mathbb{N}, P(n) \implies P(n + 1)$.

3. Mathematical Induction

Proof strategy (Regular induction)

To prove a statement of the form " $(\forall n \in \mathbb{N})[P(n)]$ "

You can show that:

- ① $P(1)$ is true, and
- ② $\forall n \in \mathbb{N}, P(n) \implies P(n + 1)$.

- ① $P(1)$ is called the base case.
- ② $P(n) \implies P(n + 1)$ is called the induction step.
- ③ $P(n)$ is called the induction hypothesis (IH).

5. Example

Theorem

$$\forall n \in \mathbb{N}, 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

5. Example

Theorem

$$\forall n \in \mathbb{N}, 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

Proof.

Let $P(n)$ be the statement $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$. We proceed by induction.

5. Example

Theorem

$$\forall n \in \mathbb{N}, 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

Proof.

Let $P(n)$ be the statement $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$. We proceed by induction.

Base case. Note that $\frac{1 \cdot (1+1)}{2} = \frac{2}{2} = 1$. So $P(1)$.

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

Want $P(n + 1)$ to be true.

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

Want $P(n + 1)$ to be true.

$$1 + 2 + 3 + \dots + n + (n + 1)$$

$$= \qquad \qquad \qquad \text{by the IH}$$

$$=$$

$$=$$

$$=$$

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

Want $P(n + 1)$ to be true.

$$\begin{aligned}1 + 2 + 3 + \dots + n + (n + 1) \\= \frac{n(n + 1)}{2} + (n + 1) \quad \text{by the IH}\end{aligned}$$

=

=

=

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

Want $P(n + 1)$ to be true.

$$\begin{aligned}1 + 2 + 3 + \dots + n + (n + 1) \\= \frac{n(n + 1)}{2} + (n + 1) \quad \text{by the IH}\end{aligned}$$

$$= \frac{n(n + 1)}{2} + \frac{2(n + 1)}{2}$$

=

=

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

Want $P(n+1)$ to be true.

$$\begin{aligned}1 + 2 + 3 + \dots + n + (n+1) \\&= \frac{n(n+1)}{2} + (n+1) \quad \text{by the IH} \\&= \frac{n(n+1)}{2} + \frac{2(n+1)}{2} \\&= \frac{n(n+1) + 2(n+1)}{2} \\&= \end{aligned}$$

5. Example

Proof.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

Want $P(n + 1)$ to be true.

$$\begin{aligned}1 + 2 + 3 + \dots + n + (n + 1) \\&= \frac{n(n + 1)}{2} + (n + 1) \quad \text{by the IH} \\&= \frac{n(n + 1)}{2} + \frac{2(n + 1)}{2} \\&= \frac{n(n + 1) + 2(n + 1)}{2} \\&= \frac{(n + 1)(n + 2)}{2} \quad \text{So } P(n + 1).\end{aligned}$$

5. Example, examined

Let $P(n)$ be the statement $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$. We proceed by induction.

Base case. Note that $\frac{1 \cdot (1+1)}{2} = \frac{2}{2} = 1$. So $P(1)$.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true for this particular n .

So $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ for this particular n .

Want $P(n+1)$ to be true.

$$\begin{aligned} & 1 + 2 + 3 + \dots + n + (n+1) \\ &= \frac{n(n+1)}{2} + (n+1) \quad \text{by the IH} \\ &= \frac{n(n+1)}{2} + \frac{2(n+1)}{2} \\ &= \frac{n(n+1) + 2(n+1)}{2} \\ &= \frac{(n+1)(n+2)}{2} \quad \text{So } P(n+1). \end{aligned}$$

5. Example, examined

Let $P(n)$ be the statement $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$. We proceed by induction.

Base case. Note that $\frac{1 \cdot (1+1)}{2} = \frac{2}{2} = 1$. So $P(1)$.

Induction step Let $n \in \mathbb{N}$. Assume $P(n)$ is true

So

$$\begin{aligned} & 1 + 2 + 3 + \dots + n + (n + 1) \\ &= \frac{n(n + 1)}{2} + (n + 1) \quad \text{by the IH} \\ &= \frac{n(n + 1)}{2} + \frac{2(n + 1)}{2} \\ &= \frac{n(n + 1) + 2(n + 1)}{2} \\ &= \frac{(n + 1)(n + 2)}{2} \quad \text{So } P(n + 1). \end{aligned}$$

Reflection

- How is induction like knocking over a stack of dominoes?
- What are the essential features of induction?
- Why did we emphasize that the inductive hypothesis is “ $P(n)$, for one particular n ”?