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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 Identify a type of statement that could be proved by induction.

2 Produce the structure of a proof by induction.
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Motivation

Motivation

Induction is a powerful proof technique that allows us to prove results
about objects with self-similarity and symmetry.
We will see many variations on it in this course.
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1. Warm-up

Assume that
1 + 3 + 5 + 7 + 9 + 11 + 13 = 72.

Then what is

(1 + 3 + 5 + 7 + 9 + 11 + 13) + 15 =

72 + 15 = 64 = 82

Observation. We can get from one equation to the next without
re-computing everything.
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2. Motivating question

Question. What is 1 + 3 + 5 + . . .+ 99?

1 = 12

⇒ 22 = 4 = 1 + 3

⇒ 32 = 9 = 1 + 3 + 5

⇒ 42 = 16 = 1 + 3 + 5 + 7

. . .

⇒ 502 = 1 + 3 + 5 + . . . 99

For a natural number n, let P(n) be the statement:

1 + 3 + 5 + . . .+ (2n − 3) + (2n − 1) = n2.

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 5 / 13



2. Motivating question

Question. What is 1 + 3 + 5 + . . .+ 99?

1 = 12 ⇒ 22 = 4 = 1 + 3

⇒ 32 = 9 = 1 + 3 + 5

⇒ 42 = 16 = 1 + 3 + 5 + 7

. . .

⇒ 502 = 1 + 3 + 5 + . . . 99

For a natural number n, let P(n) be the statement:

1 + 3 + 5 + . . .+ (2n − 3) + (2n − 1) = n2.

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 5 / 13



2. Motivating question

Question. What is 1 + 3 + 5 + . . .+ 99?

1 = 12 ⇒ 22 = 4 = 1 + 3

⇒ 32 = 9 = 1 + 3 + 5

⇒ 42 = 16 = 1 + 3 + 5 + 7

. . .

⇒ 502 = 1 + 3 + 5 + . . . 99

For a natural number n, let P(n) be the statement:

1 + 3 + 5 + . . .+ (2n − 3) + (2n − 1) = n2.

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 5 / 13



2. Motivating question

Question. What is 1 + 3 + 5 + . . .+ 99?

1 = 12 ⇒ 22 = 4 = 1 + 3

⇒ 32 = 9 = 1 + 3 + 5

⇒ 42 = 16 = 1 + 3 + 5 + 7

. . .

⇒ 502 = 1 + 3 + 5 + . . . 99

For a natural number n, let P(n) be the statement:

1 + 3 + 5 + . . .+ (2n − 3) + (2n − 1) = n2.

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 5 / 13



2. Motivating question

Question. What is 1 + 3 + 5 + . . .+ 99?

1 = 12 ⇒ 22 = 4 = 1 + 3

⇒ 32 = 9 = 1 + 3 + 5

⇒ 42 = 16 = 1 + 3 + 5 + 7

. . .

⇒ 502 = 1 + 3 + 5 + . . . 99

For a natural number n, let P(n) be the statement:

1 + 3 + 5 + . . .+ (2n − 3) + (2n − 1) = n2.

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 5 / 13



2. Motivating question

For a natural number n, let P(n) be the statement:

1 + 3 + 5 + . . .+ (2n − 3) + (2n − 1) = n2.

We showed:

P(1),P(2),P(3) and P(4) are true. Also, the warm-up was
P(7) =⇒ P(8).

Idea of induction
1 Show that P(1) is true.

2 Show that P(n) =⇒ P(n + 1), for every n ∈ N.

Important Note. Part 2 is not saying: (∀n ∈ N)[P(n)]. It’s saying “you
can always move up one step”.
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2. Motivating Example

For a natural number n, let P(n) be the statement:

1 + 3 + 5 + . . .+ (2n − 1) = n2.

Theorem

∀n ∈ N(P(n) =⇒ P(n + 1)).

Proof.

Let n ∈ N. Assume P(n) is true for this particular n.
So 1 + 3 + 5 + . . .+ (2n − 1) = n2 for this particular n.
Want P(n + 1) to be true.

1 + 3 + 5 + . . .+ (2n − 1) + (2(n + 1)− 1)

=

1 + 3 + 5 + . . .+ (2n − 1) + (2n + 2− 1)

=

n2 + (2n + 1)

=

(n + 1)2 So P(n + 1).
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2. Motivating Example

Here’s a picture of what we just did:
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3. Mathematical Induction

Proof strategy (Regular induction)

To prove a statement of the form “(∀n ∈ N)[P(n)]”
You can show that:

1 P(1) is true, and

2 ∀n ∈ N, P(n) =⇒ P(n + 1).

1 P(1) is called the base case.

2 P(n) =⇒ P(n + 1) is called the induction step.

3 P(n) is called the induction hypothesis (IH).
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5. Example

Theorem

∀n ∈ N, 1 + 2 + 3 + . . .+ n = n(n+1)
2 .

Proof.

Let P(n) be the statement 1 + 2 + 3 + . . .+ n = n(n+1)
2 . We proceed by

induction.
Base case . Note that 1·(1+1)

2 = 2
2 = 1. So P(1).
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5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=

n(n + 1)

2
+ (n + 1)

by the IH

=

n(n + 1)

2
+

2(n + 1)

2

=

n(n + 1) + 2(n + 1)

2

=

(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=

n(n + 1)

2
+ (n + 1)

by the IH

=

n(n + 1)

2
+

2(n + 1)

2

=

n(n + 1) + 2(n + 1)

2

=

(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=

n(n + 1)

2
+ (n + 1)

by the IH

=

n(n + 1)

2
+

2(n + 1)

2

=

n(n + 1) + 2(n + 1)

2

=

(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=

n(n + 1)

2
+ (n + 1)

by the IH

=

n(n + 1)

2
+

2(n + 1)

2

=

n(n + 1) + 2(n + 1)

2

=

(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=
n(n + 1)

2
+ (n + 1) by the IH

=

n(n + 1)

2
+

2(n + 1)

2

=

n(n + 1) + 2(n + 1)

2

=

(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=
n(n + 1)

2
+ (n + 1) by the IH

=
n(n + 1)

2
+

2(n + 1)

2

=

n(n + 1) + 2(n + 1)

2

=

(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=
n(n + 1)

2
+ (n + 1) by the IH

=
n(n + 1)

2
+

2(n + 1)

2

=
n(n + 1) + 2(n + 1)

2

=

(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example

Proof.

Induction step Let n ∈ N. Assume P(n) is true for this particular n.

So 1 + 2 + 3 + . . .+ n = n(n+1)
2 for this particular n.

Want P(n + 1) to be true.

1 + 2 + 3 + . . .+ n + (n + 1)

=
n(n + 1)

2
+ (n + 1) by the IH

=
n(n + 1)

2
+

2(n + 1)

2

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2
So P(n + 1).

Prof Mike Pawliuk (UTM) Intro to Proofs July 9, 2020 11 / 13



5. Example, examined

Let P(n) be the statement 1 + 2 + 3 + . . .+ n = n(n+1)
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Reflection

How is induction like knocking over a stack of dominoes?

What are the essential features of induction?

Why did we emphasize that the inductive hypothesis is “P(n), for one
particular n”?
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