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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 Prove a statement by induction, starting somewhere other than n = 1.

2 Prove a statement by induction on the evens or odds only.
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Motivation

Motivation

Induction has many variations. We can change the starting value, and how
far the “steps” are.
Today we will see two of those variations.
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1. Induction can start at different base cases

Question: How do n2 and 2n compare?

n n2 2n Is n2 ≤ 2n?

1

1 2 Yes

2

4 4 Yes

3

9 8 No

4

16 16 Yes Base case

5

25 32 Yes

6

36 64 Yes

Theorem

For all n ≥ 4 (and n ∈ N) we have n2 ≤ 2n.
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1. Induction can start at different base cases

Theorem

For all n ≥ 4 (and n ∈ N) we have n2 ≤ 2n.

Proof.

We use induction. Let P(n) be the statement “n2 ≤ 2n”.

P(4) Note that 42 = 16 ≤ 16 = 24.

P(n) =⇒ P(n + 1) Assume P(n) and n ≥ 4 (and n ∈ N).

(n + 1)2 = n2 + (2n + 1)

≤ 2n + 2n by IH and lemma below

≤ 2n+1.

Lemma. For all n ≥ 4 (and n ∈ N) we have 2n + 1 ≤ 2n.
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1. Induction can start at different base cases

Proof strategy (Induction at other base cases)

Let N ∈ N. To prove “(∀n ≥ N)P(n)”. (Here n ∈ N.)

1 Prove P(N), and

2 Show if n ≥ N, then P(n) =⇒ P(n + 1).
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2. Induction can have different “jumps”

Proof strategy (Induction on evens)

Let N ∈ N. To prove “for all even natural n, P(n)”.

1 Prove P(2), and

2 Show P(n) =⇒ P(n + 2) for all even n ≥ 2.

There is a version for odds as well.
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2. Induction can have different “jumps”

Theorem

For every even natural n, n(n2 + 3n + 2) is divisible by 24.

Proof.

By induction (on the evens). Let P(n) be “n(n2 + 3n + 2) is a multiple of
24”.
P(2) Note that

2(22 + 3(2) + 2) = 2(4 + 6 + 2) = 2(12) = 24,

which is divisible by 24.
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Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere.

Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.

Second term is because n is even.
Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.

Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.

So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



Proof continued

Proof.

Let n ∈ N be even and assume P(n).
Idea: Find n(n2 + 3n + 2) somewhere. Note:

(n + 2)((n + 2)2 + 3(n + 2) + 2)

= (n + 2)(n2 + 4n + 4 + 3n + 6 + 2)

= n
(
[n2 + 3n + 2] + [4n + 4 + 6]

)
+ 2(n2 + 7n + 12)

= [n(n2 + 3n + 2)] + [6n2] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.
So the sum is divisible by 24.

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 9 / 12



3. Other gaps

Example

Suppose someone gives you a function f : Z→ {0, 1} and tells you:

1 For all x ∈ Z, if f (x) = 1, then f (x + 3) = 1.

2 For all x ∈ Z, if f (x) = 1, then f (x + 5) = 1.

3 f (0) = 1.

What other numbers x ∈ Z can you conclude must have f (x) = 1?

0, 3, 6, 9, 12, 15, . . .
0, 5, 10, 15, 20, . . .
0, 3, 5, 6, 8, 9, 10,

[11, 12, 13], . . .
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4. Exercises

1 Find, with proof, all values of n such that 2n ≤ n!.

2 You have a pencil that is 20 cm long, and a pencil sharpener that can
take off either 3cm or 5cm at a time. What possible lengths can you
make your pencil?

3 Show that for all k ∈ N, there is an N such that nk ≤ 2n for all n ∈ N
with n ≥ N.
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Reflection

What are the two things you can modify about simple induction?

Is there a variation on induction to prove something about all
negative integers?

Is there a variation on induction to prove something about all positive
multiples of 5?
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