Introduction to Proofs - Induction - Variations

Prof Mike Pawliuk

UTM

July 16, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License. @

Prof Mike Pawliuk (UTM) Intro to Proofs July 16, 2020 1/12



Learning Objectives (for this video)

By the end of this video, participants should be able to:
© Prove a statement by induction, starting somewhere other than n = 1.

@ Prove a statement by induction on the evens or odds only.
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Induction has many variations. We can change the starting value, and how
far the “steps” are.
Today we will see two of those variations.
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1. Induction can start at different base cases

Question: How do n? and 2" compare?

n? | 2" | Is n?2 < 2m?

SO WODN =S
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1. Induction can start at different base cases

Question: How do n? and 2" compare?

2127 | Is n2 < 2m?

ni|n
111 |2 | Yes
214 |4 | Yes
319 |8 | No
4116 | 16 | Yes
5125 1|32 Yes
6| 36| 64 | Yes
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1. Induction can start at different base cases

Question: How do n? and 2" compare?

2127 | Is n2 < 2m?

ni|n
111 |2 | Yes
214 |4 | Yes
319 |8 | No
416 | 16 | Yes
5125 1|32 Yes
6| 36| 64 | Yes
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1. Induction can start at different base cases

Question: How do n? and 2" compare?

For all n >4 (and n € N) we have n? < 2".

n| 2|27 |Isn?<2m?
111 |2 | Yes

214 |4 | Yes

319 |8 | No

416 | 16 | Yes
5125 1|32 Yes

6| 36| 64 | Yes
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1. Induction can start at different base cases

For all n > 4 (and n € N) we have n? < 2n

We use induction. Let P(n) be the statement “n? < 27",
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1. Induction can start at different base cases

For all n > 4 (and n € N) we have n? < 2n

We use induction. Let P(n) be the statement “n? < 27",
P(4)| Note that 4% = 16 < 16 = 2*.
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1. Induction can start at different base cases

For all n > 4 (and n € N) we have n? < 2n

We use induction. Let P(n) be the statement “n? < 27",

P(4)

Note that 42 = 16 < 16 = 24.

P(n) = P(n+1)| Assume P(n) and n > 4 (and n € N).
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1. Induction can start at different base cases

For all n > 4 (and n € N) we have n? < 2n

We use induction. Let P(n) be the statement “n? < 27",
P(4)| Note that 4% = 16 < 16 = 2*.

P(n) = P(n+1)| Assume P(n) and n > 4 (and n € N).

(n+1)%=n*>+(2n+1)
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1. Induction can start at different base cases

For all n > 4 (and n € N) we have n? < 2n

We use induction. Let P(n) be the statement “n? < 27",
P(4)| Note that 4% = 16 < 16 = 2*.

P(n) = P(n+1)| Assume P(n) and n > 4 (and n € N).

(n+1)%=n*>+(2n+1)
<2m4 2" by IH and lemma below

Lemma. For all n> 4 (and n € N) we have 2n+1 < 2".
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1. Induction can start at different base cases

Proof strategy (Induction at other base cases)

Let N € N. To prove “(Vn > N)P(n)". (Here n € N.)
Q Prove P(N), and
@ Show if n > N, then P(n) = P(n+1).
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2. Induction can have different “jumps”

Proof strategy (Induction on evens)

Let N € N. To prove “for all even natural n, P(n)".
Q@ Prove P(2), and
@ Show P(n) = P(n+2) for all even n > 2.
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2. Induction can have different “jumps”

Proof strategy (Induction on evens)

Let N € N. To prove “for all even natural n, P(n)".
Q@ Prove P(2), and
@ Show P(n) = P(n+2) for all even n > 2.

There is a version for odds as well.
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2. Induction can have diffe

For every even natural n, n(n? 4 3n + 2) is divisible by 24.
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2. Induction can have different “jumps”

For every even natural n, n(n? 4 3n + 2) is divisible by 24.

By induction (on the evens). Let P(n) be “n(n? 4 3n+2) is a multiple of
24" .
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2. Induction can have different “jumps”

For every even natural n, n(n? 4 3n + 2) is divisible by 24.

Proof.

By induction (on the evens). Let P(n) be “n(n? 4 3n+2) is a multiple of
24" .

P(2) | Note that

2(2% +3(2) +2) = 2(4 + 6 +2) = 2(12) = 24,

which is divisible by 24.
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere.
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere. Note:

(n+2)((n+2)2+3(n+2)+2)
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o
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere. Note:

(n+2)((n+2)> +3(n+2) +2)
=(n+2)(n®+4n+4+3n+6+2)
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere. Note:

(n+2)((n+2)> +3(n+2) +2)
=(n+2)(n®+4n+4+3n+6+2)
=n ([n* +3n+2] + [4n+ 4 + 6]) + 2(n* + 7n + 12)
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere. Note:

(n+2)((n+2)?+3(n+2)+2)

= (n+2)(n2+4n+4+3n+6+2)

=n ([n* +3n+2] + [4n+ 4 + 6]) + 2(n* + 7n + 12)
= [n(n® + 3n + 2)] + [6n°] + [24n + 24]
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Proof continued

Proof.

Let n € N be even and assume P(n).

Idea: Find n(n?+ 3n + 2) somewhere. Note:
(n+2)((n+2)>+3(n+2) +2)
— (n+2)(n2+4n+4+3n+6+2)
=n ([n* +3n+2] + [4n+ 4 + 6]) + 2(n* + 7n + 12)
= [n(n® + 3n + 2)] + [6n°] + [24n + 24]

First term is divisible by 24 by IH.
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere. Note:

(n+2)((n+2)?+3(n+2)+2)

= (n+2)(n2+4n+4+3n+6+2)

=n ([n* +3n+2] + [4n+ 4 + 6]) + 2(n* + 7n + 12)
= [n(n® + 3n + 2)] + [6n°] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere. Note:

(n+2)((n+2)?+3(n+2)+2)
=(n+2)(n®>+4n+4+3n+6+2)
=n ([n* +3n+2] + [4n+ 4 + 6]) + 2(n* + 7n + 12)
= [n(n® + 3n + 2)] + [6n°] + [24n + 24]

First term is divisible by 24 by IH.

Second term is because n is even.
Third term is obvious.
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Proof continued

Proof.

Let n € N be even and assume P(n).
Idea: Find n(n?+ 3n + 2) somewhere. Note:

(n+2)((n+2)> +3(n+2) +2)

=(n+2)(n’ +4n+4+3n+6+2)

=n ([n* +3n+2] + [4n+ 4 + 6]) + 2(n* + 7n + 12)
= [n(n® + 3n + 2)] + [6n°] + [24n + 24]

First term is divisible by 24 by IH.
Second term is because n is even.
Third term is obvious.

So the sum is divisible by 24.
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3. Other gaps

Suppose someone gives you a function f : Z — {0,1} and tells you:
Q Forall x € Z, if f(x) =1, then f(x+3) =1.
@ Forall x € Z, if f(x) =1, then f(x +5) =1.
o f(0)=1.

What other numbers x € Z can you conclude must have f(x) = 17
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3. Other gaps

Suppose someone gives you a function f : Z — {0,1} and tells you:
Q Forall x € Z, if f(x) =1, then f(x+3) =1.
@ Forall x € Z, if f(x) =1, then f(x +5) =1.
o f(0)=1.

What other numbers x € Z can you conclude must have f(x) = 17

0,3,6,9,12,15,...
0,5, 10, 15,20, ...
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3. Other gaps

Suppose someone gives you a function f : Z — {0,1} and tells you:
Q Forall x € Z, if f(x) =1, then f(x+3) =1.
@ Forall x € Z, if f(x) =1, then f(x +5) =1.
o f(0)=1.

What other numbers x € Z can you conclude must have f(x) = 17

0,3,6,9,12,15,...
0,5, 10, 15,20, ...
0,3,5,6,8,9,10,
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3. Other gaps

Suppose someone gives you a function f : Z — {0,1} and tells you:
Q Forall x € Z, if f(x) =1, then f(x+3) =1.
@ Forall x € Z, if f(x) =1, then f(x +5) =1.
o f(0)=1.

What other numbers x € Z can you conclude must have f(x) = 17

0,3,6,9,12,15,...
0,5, 10, 15,20, ...
0,3,5,6,8,9,10,[11,12,13], ...
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4. Exercises

@ Find, with proof, all values of n such that 2" < nl.

@ You have a pencil that is 20 cm long, and a pencil sharpener that can
take off either 3cm or 5cm at a time. What possible lengths can you
make your pencil?

© Show that for all k € N, there is an N such that n¥ < 2" for all n € N
with n > N.
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Reflection

@ What are the two things you can modify about simple induction?

@ |s there a variation on induction to prove something about all
negative integers?

@ Is there a variation on induction to prove something about all positive
multiples of 57
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