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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 Distinguish between explicit and recursive descriptions of sequences.

2 Prove a statement about a recursively defined sequence using
induction.
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Motivation

Motivation

We want to describe a sequence of real numbers a1, a2, a3, . . . , “locally”.

Motivation

Induction and recursion are two sides of the same coin.
You use induction to prove statements about recursion.
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1. Example

Example

Define a1 = 6 and an+1 = 5an + 1 for all n ∈ N.

Note

1 a1 = 6.

2 a2 = a1+1 = 5(a1) + 1 = 5(6) + 1 = 31

3 a3 = 5(31) + 1 = 156

Compute a10 in two ways:

Recursive a1 = 6, an+1 = 5an + 1.

Approx 90 seconds.

Explicit an =
5n+1 − 1

4

Approx 10 seconds.
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2. Proof about recursive sequences

a1 = 6, an+1 = 5an + 1

Theorem

For the sequence an defined previously, ∀n ∈ N we have an =
5n+1 − 1

4
.

Proof.

By induction.
Base Note

51+1 − 1

4
=

25− 1

4
= 6 = a1.
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2. Proof about recursive sequences

a1 = 6, an+1 = 5an + 1

Proof.

Induction step . Assume that an =
5n+1 − 1

4
for a particular n ∈ N.

Note that

an+1 =

5an + 1 by definition of an

= 5

(
5n+1 − 1

4
+ 1

)
by IH

=
5n+2 − 5

4
+ 1

=
5n+2 − 5 + 4

4

=
5n+2 − 1

4
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3. Multiple base cases

The Fibonacci numbers (Fn) are

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

defined recursively by

F0 = 0 and F1 = 1, and

Fn+2 = Fn+1 + Fn for all integers n ≥ 0.

The “Fibonacci” numbers were not invented by Fibonacci. He introduced
these numbers to Europe in his book Liber Abaci.
You can listen to a podcast about this here: https://n.pr/2Pi9Cr6
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3. Multiple base cases

F0 = 0 and F1 = 1, Fn+2 = Fn+1 + Fn

Theorem

For all integers n ≥ 0, Fn ≤ 2n.

Proof.

We proceed by induction. We skip the base case for now.
Inductive step Assume Fn ≤ 2n for a particular n.

Assume Fn+1 ≤ 2n+1.

Note

Fn+2 =

Fn + Fn+1 by definition

≤ 2n + 2n+1 by IH

= 2n(1 + 2) ≤ 2n(4)

≤ 2n+2.
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3. Multiple base cases

F0 = 0 and F1 = 1, Fn+2 = Fn+1 + Fn

Proof.

Base case For n = 0 we have F0 = 0 ≤ 1 = 20.
For n = 1 we have F1 = 1 ≤ 2 = 21.

Question: Why did we have two base cases?
Answer: Because in our induction step we made two (IH) assumptions.
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4. Exercises

1 Prove that Fn ≤ 2n−1 for all non-negative integers.

2 Prove that Fn ≤ (1.7)n−1 for all non-negative integers.

3 Do better than 1.7 above.

4 Find an upper bound for the “Tribonacci” numbers defined by
T0 = 0,T1 = 0,T2 = 1, and Tn+3 = Tn+2 + Tn+1 + Tn for all
non-negative integers.
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Reflection

What are the differences between a recursively defined sequence and
an explicitly defined sequence?

Define your own recursive sequence and see what happens to it.
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