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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 State the definitions for integer divisibility, primes, and composite
numbers.

2 Make a conjecture about divisibility and then prove it by definition
unwinding, or provide a counterexample.
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Divisibility

Definition (divisibility)

Let d , n be integers. We say that d divides n if there is an integer k such
that n = dk.
We also say d is a divisor of n, or that n is a multiple of d . We represent
this as d |n.

Examples

3|12 since 12 = 3 · 4 and 4 is an integer.

5| − 30 since −30 = 5 · (−6), and −6 is an integer.

a is even if and only if 2|a. (Prove it!)

Non examples

We use 6 | to mean “does not divide”.

12 6 |3 since 3 = 12 · k has no integer solution.

5 is not a multiple of 10.
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Conjectures

Goal: Discover what is true about divisibility.

1 Play. Create 5 examples and 5 non-examples of divisibility.

2 Conjecture. Make a conjecture (guess) about how divisibility works
for all integers.

3 Test. Try to break your conjecture by finding integers that make your
conjecture false.

4 Modify. Play/conjecture/test again as needed.

5 Prove. Prove your conjecture by definition unwinding.
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Example 1

After coming up with many examples, you notice the following pattern,
and make a conjecture.

Conjecture

Suppose a, b, n are integers and a|n and b|n, then (a + b)|n.

Test. Now you should attempt to break your conjecture.

After playing for a while you discover: 1|4 and 2|4, but 3 6 |4.
Modify. One option for adjusting your conjecture is

Conjecture

Suppose d , a, b are integers and d |a and d |b, then d |(a + b).
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Example 2

After coming up with many examples, you notice the following pattern,
and make a conjecture.

Conjecture

Suppose a, b are integers and a|b and b|a, then a = b

or a = −b

.

Proof.

Suppose that a, b are integers and that a|b and b|a.

By definition (of divisibility) there are integers k ,m such that b = ak and
a = bm.
Putting these together, b = ak = (bm)k .

b = b(mk)

So then 1 = mk .
So then m = k = 1 (

so a = b

),

or m = k = −1 (

a = −b

)

.
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Reflection

What are the main steps in making and proving a conjecture?

Do these steps apply to only divisibility, or can they apply to other
definitions?

Is it okay to make false conjectures?

What is the role of play and creativity in math?
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