

# Introduction to Proofs - Even and Odd numbers

Prof Mike Pawliuk

UTM

May 7, 2020

Slides available at: [mikepawliuk.ca](http://mikepawliuk.ca)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.



# Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Give a precise definition of even integers and odd integers.
- ② Prove a simple fact about even and odd integers using a “definition unwinding” proof.

# Even numbers

## Definition (even integer)

An integer  $a$  is even if there is an integer  $n$  such that  $a = 2n$ .

## Examples

- ① 14 is even, because  $14 = 2 \cdot 7$ , and 7 is an integer.
- ②  $-10$  is even, because  $-10 = 2 \cdot (-5)$ , and  $-5$  is an integer.
- ③ 0 is even, because  $0 = 2 \cdot 0$ , and 0 is an integer.
- ④ There are an even number of rowers in the picture below.



This image is used with permission from Pixabay.

<https://pixabay.com/photos/row-boat-rowing-boat-row-boat-team-244554/>

# Odd numbers

## Definition (odd integer)

An integer  $b$  is odd if there is an integer  $m$  such that  $b = 2m + 1$ .

## Examples

- ① 7 is odd, because  $7 = 2 \cdot 3 + 1$ , and 3 is an integer.
- ②  $-1$  is odd, because  $-1 = 2 \cdot (-1) + 1$ , and  $-1$  is an integer.

# Concept check

## Question

Is the number 98765 an odd number?

Yes, because  $98765 = 2(4932) + 1$ , and 4932 is an integer.

## Question

What is wrong with the argument “Yes, because 98765 ends in a 5, which means it is odd.”

This is not the definition of odd integer that we are using. To use that you would have to prove the fact:

## Theorem

An integer  $b$  is odd if and only if its final digit is 1, 3, 5, 7, or 9.

# Definition unwinding

## Theorem

If  $a$  is an even number, and  $b$  is an odd number, then  $a + b$  is odd.

## Proof.

Let  $a$  be an even number, and let  $b$  be an odd number.



# Definition unwinding

## Theorem

If  $a$  is an even number, and  $b$  is an odd number, then  $a + b$  is odd.

## Proof.

Let  $a$  be an even number, and let  $b$  be an odd number.

So  $a + b$  is an odd number



# Definition unwinding

## Theorem

If  $a$  is an even number, and  $b$  is an odd number, then  $a + b$  is odd.

## Proof.

Let  $a$  be an even number, and let  $b$  be an odd number.

So  $a + b = 2(\quad) + 1$ . Where  $\quad$  is an integer

So  $a + b$  is an odd number by the definition of odd number. □

# Definition unwinding

## Theorem

If  $a$  is an even number, and  $b$  is an odd number, then  $a + b$  is odd.

## Proof.

Let  $a$  be an even number, and let  $b$  be an odd number.

By the definition of even number, there is an integer  $n$  so that  $a = 2n$ .

So  $a + b = 2(\quad) + 1$ . Where  $\quad$  is an integer

So  $a + b$  is an odd number by the definition of odd number. □

# Definition unwinding

## Theorem

If  $a$  is an even number, and  $b$  is an odd number, then  $a + b$  is odd.

## Proof.

Let  $a$  be an even number, and let  $b$  be an odd number.

By the definition of even number, there is an integer  $n$  so that  $a = 2n$ .

By the definition of odd number, there is an integer  $m$  so that  $b = 2m + 1$ .

So  $a + b = 2(\quad) + 1$ . Where  $\quad$  is an integer

So  $a + b$  is an odd number by the definition of odd number. □

# Definition unwinding

## Theorem

If  $a$  is an even number, and  $b$  is an odd number, then  $a + b$  is odd.

## Proof.

Let  $a$  be an even number, and let  $b$  be an odd number.

By the definition of even number, there is an integer  $n$  so that  $a = 2n$ .

By the definition of odd number, there is an integer  $m$  so that  $b = 2m + 1$ .

Notice  $a + b = 2n + 2m + 1$ .

So  $a + b = 2(\quad) + 1$ . Where  $\quad$  is an integer

So  $a + b$  is an odd number by the definition of odd number. □

# Definition unwinding

## Theorem

If  $a$  is an even number, and  $b$  is an odd number, then  $a + b$  is odd.

## Proof.

Let  $a$  be an even number, and let  $b$  be an odd number.

By the definition of even number, there is an integer  $n$  so that  $a = 2n$ .

By the definition of odd number, there is an integer  $m$  so that  $b = 2m + 1$ .

Notice  $a + b = 2n + 2m + 1$ .

So  $a + b = 2(n + m) + 1$ . Where  $n + m$  is an integer since both  $n, m$  are integers.

So  $a + b$  is an odd number by the definition of odd number. □

# Exercises

## Exercise 1

Prove, by definition unwinding, that:

- The sum of any two odd numbers is even.
- The product of any two odd numbers is odd.
- If you add an integer to itself, then the result is even.

## Exercise 2

What other facts about even numbers, odd numbers, addition and multiplication do you know? Write down and prove all facts you know.

# Concept check 1

What is wrong with this argument?

## Claim

3 is an even number because  $3 = 2(1.5)$ .

## Concept check 2

What is missing in this proof?

### Theorem

If  $a$  is even, then  $a^2$  is even.

### Proof.

Note  $a^2 = (2n)^2 = 4n^2 = 2(2n^2)$ .



## Concept check 2

What is missing in this proof?

### Theorem

If  $a$  is even, then  $a^2$  is even.

### Proof.

Let  $a$  be an even number. So  $a = 2n$  for some integer  $n$ .

Note  $a^2 = (2n)^2 = 4n^2 = 2(2n^2)$ .

Since  $n$  is an integer, so is  $2n^2$ . So  $a^2$  is even by definition.



# Reflection

- How can you tell if a small bag of stones contains an even number of stones without counting them?
- How would you answer the question “Is  $\pi$  even or odd?”
- Can a number be both even and odd at the same time? Why?