

Introduction to Proofs - Mathematical Statements

Prof Mike Pawliuk

UTM

May 12, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Identify a mathematical statement.
- ② Change the truth value of a statement by changing the scope of variables.
- ③ Create a statement using \forall, \exists quantifiers.
- ④ Translate a formal mathematical statement into English.
- ⑤ Distinguish mathematical statements with mixed quantifiers.

What is a mathematical statement?

Idea, not definition

“A mathematical statement is a statement that can be true or false. It asserts that something is true. It is precise and leaves nothing up to interpretation.”

What is a mathematical statement?

Idea, not definition

“A mathematical statement is a statement that can be true or false. It asserts that something is true. It is precise and leaves nothing up to interpretation.”

These are all mathematical statements:

- “ $2 < 7$ ”,
- “ $-5 = 3$ ”,
- “There is a real number z such that $\sin(z) = 10$.”
- $\sqrt{2}$ is not an integer.

Non-examples

These are not mathematical statements.

- $\frac{12}{15}$,
- \mathbb{N} or \mathbb{Z} ,
- “ $2 + 3$ ”,
- “ $x + 2 = 3$ ”.

Non-examples

These are not mathematical statements.

- $\frac{12}{15}$,
- \mathbb{N} or \mathbb{Z} ,
- “ $2 + 3$ ”,
- “ $x + 2 = 3$ ”.

Motivation

Our goal is to make conjectures and prove theorems. Only mathematical statements can be proved; non-mathematical statements don't assert anything.

Scope is important

Motivation

Is " $x^2 > 0$ " a mathematical statement?

Scope is important

Motivation

Is " $x^2 > 0$ " a mathematical statement?

No! Because we don't know what x is, and the truth of this could change depending on the scope of x .

Scope is important

Motivation

Is " $x^2 > 0$ " a mathematical statement?

No! Because we don't know what x is, and the truth of this could change depending on the scope of x . For example, these are mathematical statements.

- ① " $x^2 > 0$ when $x = 0$ ",
- ② " $x^2 > 0$ when $x = 3$ ",
- ③ " $x^2 > 0$ for all real numbers x ",
- ④ " $x^2 > 0$ for all natural numbers x ",
- ⑤ "There is at least one real number x with $x^2 > 0$."

Motivation

We often want to prove statements about all numbers/objects of a certain class. Sometimes we only want to show there exists a number/object with a certain property.

Quantifiers

Motivation

We often want to prove statements about all numbers/objects of a certain class. Sometimes we only want to show there exists a number/object with a certain property.

Words	Name	Symbol
For all, For any, Every	Universal Quantifier	\forall
There exists, There is, For some	Existential Quantifier	\exists

Examples

Examples

- 1 “ $(\exists x \in \mathbb{R})[x^2 > 0]$ ” means . . .

Examples

Examples

- 1 “ $(\exists x \in \mathbb{R})[x^2 > 0]$ ” means . . . “There is a real number x with $x^2 > 0$.”

Examples

Examples

- ① “ $(\exists x \in \mathbb{R})[x^2 > 0]$ ” means . . . “There is a real number x with $x^2 > 0$.”
- ② “ $(\forall x \in \mathbb{R})[x^2 > 0]$ ” means . . .

Examples

Examples

- ① " $(\exists x \in \mathbb{R})[x^2 > 0]$ " means . . . "There is a real number x with $x^2 > 0$."
- ② " $(\forall x \in \mathbb{R})[x^2 > 0]$ " means . . . "For every real number x it is true that $x^2 > 0$."

Examples

Examples

- ① $(\exists x \in \mathbb{R})[x^2 > 0]$ means . . . “There is a real number x with $x^2 > 0$.”
- ② $(\forall x \in \mathbb{R})[x^2 > 0]$ means . . . “For every real number x it is true that $x^2 > 0$.”

Notation

If $P(x)$ is a property that x can have (such as “ x is even” or “ x is rational”, we use this notation:

- ① $\exists x, P(x)$ means . . .

Examples

Examples

- ① $(\exists x \in \mathbb{R})[x^2 > 0]$ means . . . “There is a real number x with $x^2 > 0$.”
- ② $(\forall x \in \mathbb{R})[x^2 > 0]$ means . . . “For every real number x it is true that $x^2 > 0$.”

Notation

If $P(x)$ is a property that x can have (such as “ x is even” or “ x is rational”, we use this notation:

- ① $\exists x, P(x)$ means . . . “There is an x with property $P(x)$.”

Examples

Examples

- ① $(\exists x \in \mathbb{R})[x^2 > 0]$ means ... "There is a real number x with $x^2 > 0$."
- ② $(\forall x \in \mathbb{R})[x^2 > 0]$ means ... "For every real number x it is true that $x^2 > 0$."

Notation

If $P(x)$ is a property that x can have (such as "x is even" or "x is rational", we use this notation:

- ① $\exists x, P(x)$ means ... "There is an x with property $P(x)$."
- ② $\forall x, P(x)$ means ...

Examples

Examples

- ① $(\exists x \in \mathbb{R})[x^2 > 0]$ means ... "There is a real number x with $x^2 > 0$."
- ② $(\forall x \in \mathbb{R})[x^2 > 0]$ means ... "For every real number x it is true that $x^2 > 0$."

Notation

If $P(x)$ is a property that x can have (such as "x is even" or "x is rational", we use this notation:

- ① $\exists x, P(x)$ means ... "There is an x with property $P(x)$."
- ② $\forall x, P(x)$ means ... "Every x has the property $P(x)$."

Mixing Quantifiers

Note

A mathematical statement can have many quantifiers. The statement is read left to right. Variables on the right can depend on earlier variables.

Mixing Quantifiers

Note

A mathematical statement can have many quantifiers. The statement is read left to right. Variables on the right can depend on earlier variables.

- ① $(\forall \text{ students } p \text{ in this course})(\exists n)[n \text{ is the name of } p]$.

Mixing Quantifiers

Note

A mathematical statement can have many quantifiers. The statement is read left to right. Variables on the right can depend on earlier variables.

- ① $(\forall \text{ students } p \text{ in this course})(\exists n)[n \text{ is the name of } p].$
- ② $(\exists n)(\forall \text{ students } p \text{ in this course})[n \text{ is the name of } p].$

Mixing Quantifiers

Note

A mathematical statement can have many quantifiers. The statement is read left to right. Variables on the right can depend on earlier variables.

- ① $(\forall \text{ students } p \text{ in this course})(\exists n)[n \text{ is the name of } p].$
- ② $(\exists n)(\forall \text{ students } p \text{ in this course})[n \text{ is the name of } p].$
- ③ $(\exists \text{ student } p \text{ in this course})(\forall n)[n \text{ is the name of } p].$

Mixing Quantifiers

Note

A mathematical statement can have many quantifiers. The statement is read left to right. Variables on the right can depend on earlier variables.

- ➊ $(\forall \text{ students } p \text{ in this course})(\exists n)[n \text{ is the name of } p]$.
- ➋ $(\exists n)(\forall \text{ students } p \text{ in this course})[n \text{ is the name of } p]$.
- ➌ $(\exists \text{ student } p \text{ in this course})(\forall n)[n \text{ is the name of } p]$.
- ➍ $(\forall n)(\exists \text{ student } p \text{ in this course})[n \text{ is the name of } p]$.

Exercises

- ① Finish the definition using quantifiers. An integer x is even if ...
- ② Finish the definition using only quantifiers. A natural number n is composite if ...
- ③ Express this as a mathematical statement: For every positive real number, there is a number between it and 0.
- ④ **Harder.** Express this as a mathematical statement with mixed quantifiers: There is a smallest natural number.

Reflection

- Why do we care about mathematical statements? How are they related to conjectures and theorems?
- How would you feel if your grade in this course was “ $\exists x$ such that $x/100$.”?
- What does it take to show that the statement “ $\forall x P(x)$ ” is false?
- Come up with a statement that uses three quantifiers.