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Learning Objectives (for this video)

By the end of this video, participants should be able to:
© Show that two formulas are logically equivalent.

@ Prove that a statement is a tautology or a contradiction.
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There are usually many ways to express the same thing. We want to know
when two things are expressing the same (mathematical) information.
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Motivation

Motivation

There are usually many ways to express the same thing. We want to know
when two things are expressing the same (mathematical) information.

Definition

Let A and B be two mathematical statements made up of P and Q (and
logical connectives). We say that A and B are logically equivalent if A and
B have the same truth values for all choices of P and Q.
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Motivation

There are usually many ways to express the same thing. We want to know
when two things are expressing the same (mathematical) information.

v

Let A and B be two mathematical statements made up of P and Q (and
logical connectives). We say that A and B are logically equivalent if A and
B have the same truth values for all choices of P and Q.

v

Example 1. P is logically equivalent to =(—P).

Proof.
P | =P | —(=P)
TI|F
FIT
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Motivation

There are usually many ways to express the same thing. We want to know
when two things are expressing the same (mathematical) information.

v

Let A and B be two mathematical statements made up of P and @ (and
logical connectives). We say that A and B are logically equivalent if A and
B have the same truth values for all choices of P and Q.

v

Example 1. P is logically equivalent to =(—P).

Proof.
P | =P | —(=P)
TI|F T
FIT F

Column 1 (the truth values of P) and column 3 (the truth values of =—P)

are identical, therefore P and ——P are logically equivalent by definition.
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Example 2

Example 2. P = Q is logically equivalent to (-Q) = (—P).
Proof.

mT o
nm4 T
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Example 2

Example 2. P = Q is logically equivalent to (-Q) = (—P).
Proof.

P Q|P= Q|-Q -P|(-Q) = (=P)|
T T T
T F F
F T T
F F T

Prof Mike Pawliuk (UTM) Intro to Proofs May 14, 2020 4/8



Example 2

Example 2. P = Q is logically equivalent to (-Q) = (—P).
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Example 2

Example 2. P = Q is logically equivalent to (-Q) = (—P).
Proof.

P QIP=Q|-Q -P|[(=Q) = (=P) |
T T T FF T
T F F T F F
FoT T FooT T
F F T T T T

Column 3 (the truth values of P = Q) and column 6 (the truth values
of (-Q) = (—P)) are identical, therefore P — Q is logically
equivalent to (-Q) = (—P).
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Example 2

Example 2. P = Q is logically equivalent to (=Q) = (=P).
Proof.

P Q|P=Q|-Q -P|(-Q) = (=P)|
T T T F F T
T F Fo|T F F
F T T F T T
F F T T T T

Column 3 (the truth values of P = Q) and column 6 (the truth values
of (-Q) = (—P)) are identical, therefore P — Q is logically
equivalent to (-Q) = (—P).

Definition (Contrapositive)

—-Q = —P is called the contrapositive of P — Q.
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(Non-)Example 3

(Non-)Example 3
Show that P = Q is not logically equivalent to @ = P.

P—= Q|Q = P

M ||| o
-0
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(Non-)Example 3

(Non-)Example 3
Show that P = Q is not logically equivalent to @ = P.

P Q| Q = P

| | IR
| 4| 4o
| = || |
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(Non-)Example 3

(Non-)Example 3
Show that P = Q is not logically equivalent to @ = P.

PIQ[P = Q[Q— P
T|T T T
T|F F T
F T T F
FIF T T
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(Non-)Example 3

(Non-)Example 3
Show that P = Q is not logically equivalent to @ = P.

PIQ[P = Q[Q— P
T|T T T
T|F F T
F T T F
FIF T T

If P is true, and Q is false, then P = Q@ is false, but @ = P is
true.
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(Non-)Example 3

(Non-)Example 3
Show that P = Q is not logically equivalent to @ = P.

PIQ[P = Q[Q— P
T|T T T
T|F F T
F T T F
FIF T T

If P is true, and Q is false, then P = Q@ is false, but @ = P is
true. L]

Human example. “If it rains, then it will be wet” is not the same as “If it
is wet, then it rains.”.
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Tautologies and Contradictions

Compute the truth tables of the statements P A (=P), and PV (=P).
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Tautologies and Contradictions

Compute the truth tables of the statements P A (=P), and PV (=P).

P|—-P|PA=P|PV(=P)
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Tautologies and Contradictions

Compute the truth tables of the statements P A (=P), and PV (=P).

P|—-P|PA=P|PV(=P)
TF F
FIT F

Prof Mike Pawliuk (UTM) Intro to Proofs May 14, 2020 6/8



Tautologies and Contradictions

Compute the truth tables of the statements P A (=P), and PV (=P).

P|—-P|PA=P|PV(=P)
TF F T
FIT F T

Prof Mike Pawliuk (UTM) Intro to Proofs May 14, 2020 6/8



Tautologies and Contradictions

Compute the truth tables of the statements P A (=P), and PV (=P).

P|—-P|PA=P|PV(=P)
TF F T
FIT F T

Since P A =P is always false, it is called a contradiction. Since PV —P is
always true, it is called a tautology.
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Exercises

Are the following statements contradictions, tautologies, or neither?
QP =P

Q@ P = P

Q (FQ)VQ) = (M)A Q)
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Reflection

Why might someone prefer to use the contrapositive of an
implication, instead of the original implication?

@ What happens when you take the contrapositive of the
contrapositive?

@ Construct your own tautology and contradiction.

@ Do we need brackets when referring to (P = Q) = R, or is this
the same as P — (Q = R)?

o In English, why would someone say “ I'm not not eating cookies right
now”, instead of “I'm eating cookies right now" .
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