

Introduction to Proofs - Proof Strategies: Direct and Contrapositive

Prof Mike Pawliuk

UTM

May 21, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Prove an implication using a direct proof and a contrapositive.
- ② State the converse and contrapositive of an implication.
- ③ Prove an equivalence.

Motivation

We are now able to make mathematical statements (involving $\forall, \exists, \wedge, \vee, \implies, \neg, \Leftrightarrow$). Today we will see what it means to prove these statements.

Direct Proof

Proof Technique ($P \implies Q$, directly)

To prove a statement of the form $P \implies Q$. You assume P (is true).
Deduce Q (by a series of logical, justified steps).

Direct Proof

Proof Technique ($P \implies Q$, directly)

To prove a statement of the form $P \implies Q$. You assume P (is true). Deduce Q (by a series of logical, justified steps).

Theorem

Let $x \in \mathbb{Z}$. If x is even, then x^2 is even.

Direct Proof

Proof Technique ($P \implies Q$, directly)

To prove a statement of the form $P \implies Q$. You assume P (is true). Deduce Q (by a series of logical, justified steps).

Theorem

Let $x \in \mathbb{Z}$. If x is even, then x^2 is even.

Proof.

Assume x is even.

Direct Proof

Proof Technique ($P \implies Q$, directly)

To prove a statement of the form $P \implies Q$. You assume P (is true). Deduce Q (by a series of logical, justified steps).

Theorem

Let $x \in \mathbb{Z}$. If x is even, then x^2 is even.

Proof.

Assume x is even. ← “Assume P .”

Direct Proof

Proof Technique ($P \implies Q$, directly)

To prove a statement of the form $P \implies Q$. You assume P (is true). Deduce Q (by a series of logical, justified steps).

Theorem

Let $x \in \mathbb{Z}$. If x is even, then x^2 is even.

Proof.

Assume x is even. ← “Assume P .”

By definition, there is an integer k such that $x = 2k$. Notice $x^2 = (2k)^2 = 2(2k^2)$. Since k is an integer, so is $2k^2$.

Direct Proof

Proof Technique ($P \implies Q$, directly)

To prove a statement of the form $P \implies Q$. You assume P (is true). Deduce Q (by a series of logical, justified steps).

Theorem

Let $x \in \mathbb{Z}$. If x is even, then x^2 is even.

Proof.

Assume x is even. ← “Assume P .”

By definition, there is an integer k such that $x = 2k$. Notice $x^2 = (2k)^2 = 2(2k^2)$. Since k is an integer, so is $2k^2$.

Therefore, by definition, x^2 is even.

Direct Proof

Proof Technique ($P \implies Q$, directly)

To prove a statement of the form $P \implies Q$. You assume P (is true). Deduce Q (by a series of logical, justified steps).

Theorem

Let $x \in \mathbb{Z}$. If x is even, then x^2 is even.

Proof.

Assume x is even. ← “Assume P .”

By definition, there is an integer k such that $x = 2k$. Notice $x^2 = (2k)^2 = 2(2k^2)$. Since k is an integer, so is $2k^2$.

Therefore, by definition, x^2 is even. ← “Deduce Q .”

Contrapositive

Proof Technique ($P \implies Q$, contrapositive)

To prove a statement of the form $P \implies Q$, we can instead prove the logically equivalent $(\neg Q) \implies (\neg P)$. Assume $\neg Q$. Deduce $\neg P$.

Contrapositive

Proof Technique ($P \implies Q$, contrapositive)

To prove a statement of the form $P \implies Q$, we can instead prove the logically equivalent $(\neg Q) \implies (\neg P)$. Assume $\neg Q$. Deduce $\neg P$.

Theorem

Let $x \in \mathbb{Z}$. If x^2 is even, then x is even.

Contrapositive

Proof Technique ($P \implies Q$, contrapositive)

To prove a statement of the form $P \implies Q$, we can instead prove the logically equivalent $(\neg Q) \implies (\neg P)$. Assume $\neg Q$. Deduce $\neg P$.

Theorem

Let $x \in \mathbb{Z}$. If x^2 is even, then x is even.

Proof.

We prove by contrapositive. Assume x is odd.

Contrapositive

Proof Technique ($P \implies Q$, contrapositive)

To prove a statement of the form $P \implies Q$, we can instead prove the logically equivalent $(\neg Q) \implies (\neg P)$. Assume $\neg Q$. Deduce $\neg P$.

Theorem

Let $x \in \mathbb{Z}$. If x^2 is even, then x is even.

Proof.

We prove by contrapositive. Assume x is odd.

← “Assume $\neg Q$.”

Contrapositive

Proof Technique ($P \implies Q$, contrapositive)

To prove a statement of the form $P \implies Q$, we can instead prove the logically equivalent $(\neg Q) \implies (\neg P)$. Assume $\neg Q$. Deduce $\neg P$.

Theorem

Let $x \in \mathbb{Z}$. If x^2 is even, then x is even.

Proof.

We prove by contrapositive. Assume x is odd. ← “Assume $\neg Q$.”

By definition, there is an integer k such that $x = 2k + 1$. Notice

$x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Since k is an integer, so is $2k^2 + 2k$.

Contrapositive

Proof Technique ($P \implies Q$, contrapositive)

To prove a statement of the form $P \implies Q$, we can instead prove the logically equivalent $(\neg Q) \implies (\neg P)$. Assume $\neg Q$. Deduce $\neg P$.

Theorem

Let $x \in \mathbb{Z}$. If x^2 is even, then x is even.

Proof.

We prove by contrapositive. Assume x is odd. ← “Assume $\neg Q$.”

By definition, there is an integer k such that $x = 2k + 1$. Notice

$x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Since k is an integer, so is $2k^2 + 2k$.

Therefore, by definition, x^2 is odd.

Contrapositive

Proof Technique ($P \implies Q$, contrapositive)

To prove a statement of the form $P \implies Q$, we can instead prove the logically equivalent $(\neg Q) \implies (\neg P)$. Assume $\neg Q$. Deduce $\neg P$.

Theorem

Let $x \in \mathbb{Z}$. If x^2 is even, then x is even.

Proof.

We prove by contrapositive. Assume x is odd. ← “Assume $\neg Q$.”

By definition, there is an integer k such that $x = 2k + 1$. Notice

$x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Since k is an integer, so is $2k^2 + 2k$.

Therefore, by definition, x^2 is odd. ← “Deduce $\neg P$.”

Different techniques

Question

How do I know which technique to use when proving $P \implies Q$?

Great question!

Different techniques

Question

How do I know which technique to use when proving $P \implies Q$?

Great question!

Exercise

Try to prove the previous implication (x^2 even implies x even) directly, and not by contrapositive. It's much harder.

Different techniques

Question

How do I know which technique to use when proving $P \implies Q$?

Great question!

Exercise

Try to prove the previous implication (x^2 even implies x even) directly, and not by contrapositive. It's much harder.

We'll get to a more detailed answer to this question after we see "proof by contradiction".

Recall

The converse of an implication is $Q \Rightarrow P$. It is NOT logically equivalent to $P \Rightarrow Q$.

Converse

Recall

The converse of an implication is $Q \Rightarrow P$. It is NOT logically equivalent to $P \Rightarrow Q$.

Example

“If I get an A, then I will pass” is not the same as “If I pass, then I will get an A.”

Converse

Recall

The converse of an implication is $Q \Rightarrow P$. It is NOT logically equivalent to $P \Rightarrow Q$.

Example

“If I get an A, then I will pass” is not the same as “If I pass, then I will get an A.”

- **Original statement.** $P \Rightarrow Q$.
- **Contrapositive.** $\neg Q \Rightarrow \neg P$. (Equivalent to original.)
- **Converse.** $Q \Rightarrow P$. (Not equivalent to original.)

Equivlences

Recall. $P \Leftrightarrow Q$ is logically equivlaent to " $(P \implies Q) \wedge (Q \implies P)$."

Equivlences

Recall. $P \Leftrightarrow Q$ is logically equivlaent to " $(P \implies Q) \wedge (Q \implies P)$."

Proof Technique ($P \Leftrightarrow Q$)

To prove $P \Leftrightarrow Q$ you do two things:

- ➊ prove $P \implies Q$, and
- ➋ prove $Q \implies P$.

Equivlences

Recall. $P \Leftrightarrow Q$ is logically equivalent to " $(P \implies Q) \wedge (Q \implies P)$."

Proof Technique ($P \Leftrightarrow Q$)

To prove $P \Leftrightarrow Q$ you do two things:

- ➊ prove $P \implies Q$, and
- ➋ prove $Q \implies P$.

Proof Technique ($P \Leftrightarrow Q$) - Alternate

To prove $P \Leftrightarrow Q$ you can instead

- ➊ prove $P \implies Q$, and
- ➋ prove $\neg P \implies \neg Q$.

Equivalence proofs

Theorem

Let $x \in \mathbb{Z}$. x is even if and only if x^2 is even.

We proved this by showing

Equivalence proofs

Theorem

Let $x \in \mathbb{Z}$. x is even if and only if x^2 is even.

We proved this by showing $P \implies Q$ and $\neg P \implies \neg Q$.

Equivalence proofs

Theorem

Let $x \in \mathbb{Z}$. x is even if and only if x^2 is even.

We proved this by showing $P \implies Q$ and $\neg P \implies \neg Q$.

$P \Leftrightarrow Q \Leftrightarrow R$

You will often need to prove that three statements are equivalent. There are many ways to do this.

Strategy 1. Prove:

- ① $P \implies Q$.
- ② $Q \implies P$.
- ③ $Q \implies R$.
- ④ $R \implies Q$.

Equivalence proofs

Theorem

Let $x \in \mathbb{Z}$. x is even if and only if x^2 is even.

We proved this by showing $P \implies Q$ and $\neg P \implies \neg Q$.

$P \Leftrightarrow Q \Leftrightarrow R$

You will often need to prove that three statements are equivalent. There are many ways to do this.

Strategy 1. Prove:

- ① $P \implies Q$.
- ② $Q \implies P$.
- ③ $Q \implies R$.
- ④ $R \implies Q$.

Strategy 2. Prove:

- ① $P \implies Q$.
- ② $Q \implies R$.
- ③ $R \implies P$.

Exercise

Prove the following theorem that there are many equivalent ways to represent a rational number.

Theorem

Let x be a real number. The following are equivalent.

- ① $(\exists p \in \mathbb{Z})(\exists q \in \mathbb{Z})[q \neq 0 \wedge x = \frac{p}{q}]$.
- ② $(\exists a \in \mathbb{Z})(\exists b \in \mathbb{N})[x = \frac{a}{b}]$.
- ③ $(\exists c \in \mathbb{Z})(\exists d \in \mathbb{N})[x = \frac{c}{d} \wedge c, d \text{ have no common prime factors}]$.

Reflection

- What is the difference between a contrapositive and a converse?
- Create an example of an implication and construct its contrapositive and converse.
- If you have taken a linear algebra course you have seen a proof that 10 (or so) statements are equivalent to “a matrix is invertible”. What proof strategy did they use?