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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 Explain the logic of a proof by contradiction.

2 Produce a proof by contradiction.

3 Decide which proof technique (Direct, contrapositive, contradiction)
is most appropriate.
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Story about Avacados and Guacamole
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Proof by contradiction

Proof Technique (P =⇒ Q) - Contradiction

To prove P =⇒ Q, by contradiction: Assume P. Assume ¬Q. Derive a
contradiction. (Conclude Q.)

We will look at three examples: one mild, one mild, one spicy.
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Example 1

Definitions:

An integer x is even if and only if (∃k ∈ Z)[x = 2k].

An integer x is odd if and only if (∃m ∈ Z)[x = 2m + 1].

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even

“Assume P.”

and x

is odd

“Assume ¬Q.”

.

Since x is even, there is an integer k such that x = 2k. Since x is odd,
there is an integer m such that x = 2m + 1.
So 2k = 2m + 1, and also 2k − 2m = 1 and k −m = 1

2 . However, k −m

is an integer, and 1
2 is not. ⇒⇐ Indicates a contradiction
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Example 2

Exercise. Prove the following using a proof by contradiciton.

Theorem

There are no natural numbers x , y with x2 − y2 = 1.
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Example 3

Lemma. If n ∈ N and n > 1, then there is a prime number p such that
p|n.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Proof.

Suppose not. Let p1, p2, . . . , pn be the list of all prime numbers.
Let N = p1 · p2 · p3 · . . . · pn + 1. By the lemma, there is a pi so that pi |N.
However, this is impossible, since dividing N by pi will have a remainder of
1. ⇒⇐.

Note the N in this proof is not necessarily prime. E.g.
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = (59)(509).
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Pros and Cons of proof by contradiction

Pros:

1 It gives you two things to
work with (P and ¬Q)

2 Often the proofs are short.

Cons:

1 The proofs are not
constructive. (e.g. Euclid’s
proof does not tell you how
to make large prime
numbers.)

2 It’s not always clear what
contradiction to aim for.

3 It can make
messy/confusing proofs.
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What technique should I use?

1 Direct. Is good for “definition unwinding” proofs.

2 Contrapositive. Very similar to direct, but when ¬Q and ¬P are
easier to work with. (e.g. x + y = 0 is easier to work with than
x + y 6= 0.)

3 Contradiction. Good for statements of the form “no weird things
exist”. (If the things are sufficiently weird, then assuming it exists
should produce a contradiction.)

Exercise What technique should you use to prove these statements?

1
√

2 is irrational.

Contradiction

2 (∀x ∈ R)[x > 0 =⇒ x2 > 0].

Direct

3 (∀x ∈ R)[x2 > 0 =⇒ x 6= 0].

Contrapositive

Prof Mike Pawliuk (UTM) Intro to Proofs May 21, 2020 9 / 10



What technique should I use?

1 Direct. Is good for “definition unwinding” proofs.

2 Contrapositive. Very similar to direct, but when ¬Q and ¬P are
easier to work with. (e.g. x + y = 0 is easier to work with than
x + y 6= 0.)

3 Contradiction. Good for statements of the form “no weird things
exist”. (If the things are sufficiently weird, then assuming it exists
should produce a contradiction.)

Exercise What technique should you use to prove these statements?

1
√

2 is irrational.

Contradiction

2 (∀x ∈ R)[x > 0 =⇒ x2 > 0].

Direct

3 (∀x ∈ R)[x2 > 0 =⇒ x 6= 0].

Contrapositive

Prof Mike Pawliuk (UTM) Intro to Proofs May 21, 2020 9 / 10



What technique should I use?

1 Direct. Is good for “definition unwinding” proofs.

2 Contrapositive. Very similar to direct, but when ¬Q and ¬P are
easier to work with. (e.g. x + y = 0 is easier to work with than
x + y 6= 0.)

3 Contradiction. Good for statements of the form “no weird things
exist”. (If the things are sufficiently weird, then assuming it exists
should produce a contradiction.)

Exercise What technique should you use to prove these statements?

1
√

2 is irrational. Contradiction

2 (∀x ∈ R)[x > 0 =⇒ x2 > 0].

Direct

3 (∀x ∈ R)[x2 > 0 =⇒ x 6= 0].

Contrapositive

Prof Mike Pawliuk (UTM) Intro to Proofs May 21, 2020 9 / 10



What technique should I use?

1 Direct. Is good for “definition unwinding” proofs.

2 Contrapositive. Very similar to direct, but when ¬Q and ¬P are
easier to work with. (e.g. x + y = 0 is easier to work with than
x + y 6= 0.)

3 Contradiction. Good for statements of the form “no weird things
exist”. (If the things are sufficiently weird, then assuming it exists
should produce a contradiction.)

Exercise What technique should you use to prove these statements?

1
√

2 is irrational. Contradiction

2 (∀x ∈ R)[x > 0 =⇒ x2 > 0]. Direct

3 (∀x ∈ R)[x2 > 0 =⇒ x 6= 0].

Contrapositive

Prof Mike Pawliuk (UTM) Intro to Proofs May 21, 2020 9 / 10



What technique should I use?

1 Direct. Is good for “definition unwinding” proofs.

2 Contrapositive. Very similar to direct, but when ¬Q and ¬P are
easier to work with. (e.g. x + y = 0 is easier to work with than
x + y 6= 0.)

3 Contradiction. Good for statements of the form “no weird things
exist”. (If the things are sufficiently weird, then assuming it exists
should produce a contradiction.)

Exercise What technique should you use to prove these statements?

1
√

2 is irrational. Contradiction

2 (∀x ∈ R)[x > 0 =⇒ x2 > 0]. Direct

3 (∀x ∈ R)[x2 > 0 =⇒ x 6= 0]. Contrapositive

Prof Mike Pawliuk (UTM) Intro to Proofs May 21, 2020 9 / 10



Reflection

What types of proofs are constructive, and which are
non-constructive?

What are the advantages and disadvantages of both?

What are some reasons why you might want to use proof by
contradiciton?
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