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Learning Objectives (for this video)

By the end of this video, participants should be able to:
@ Explain the logic of a proof by contradiction.
@ Produce a proof by contradiction.

© Decide which proof technique (Direct, contrapositive, contradiction)
is most appropriate.
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Story about Avacados and Guacamole
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Proof by contradiction

Proof Technique (P = Q) - Contradiction
To prove P —> Q, by contradiction: Assume P. Assume —Q. Derive a
contradiction. (Conclude Q.)

We will look at three examples: one mild, one mild, one spicy.
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Example 1

Definitions:
@ An integer x is even if and only if (3k € Z)[x = 2k].
@ An integer x is odd if and only if (3m € Z)[x = 2m + 1].
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Example 2

Exercise. Prove the following using a proof by contradiciton.

There are no natural numbers x, y with x> — y? = 1.
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Example 3

Lemma. If n € N and n > 1, then there is a prime number p such that
pln.
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Example 3

Lemma. If n € N and n > 1, then there is a prime number p such that
pln.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Suppose not. Let p1, po, ..., p, be the list of all prime numbers.

Let N=p1-p2-p3-...- pp+ 1. By the lemma, there is a p; so that p;| .
However, this is impossible, since dividing N by p; will have a remainder of
1l =« Ul

Note the N in this proof is not necessarily prime. E.g.
2-3.5.7-11-13+1 = 30031 = (59)(509).
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Pros and Cons of proof by contradiction

Pros:

O It gives you two things to
work with (P and =Q)

@ Often the proofs are short.
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Pros and Cons of proof by contradiction

Cons:

@ The proofs are not
constructive. (e.g. Euclid’s

Pros: proof does not tell you how
O It gives you two things to to make large prime
work with (P and —Q) numbers.)
@ Often the proofs are short. @ It's not always clear what

contradiction to aim for.

© It can make
messy /confusing proofs.
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What technique should | use?

@ Direct. Is good for “definition unwinding” proofs.

@ Contrapositive. Very similar to direct, but when =Q and =P are
easier to work with. (e.g. x + y = 0 is easier to work with than
x+y#0.)

© Contradiction. Good for statements of the form “no weird things
exist”. (If the things are sufficiently weird, then assuming it exists
should produce a contradiction.)
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Reflection

@ What types of proofs are constructive, and which are
non-constructive?

@ What are the advantages and disadvantages of both?

@ What are some reasons why you might want to use proof by
contradiciton?
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