

Introduction to Proofs - Proof Strategies: Contradiction

Prof Mike Pawliuk

UTM

May 21, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Explain the logic of a proof by contradiction.
- ② Produce a proof by contradiction.
- ③ Decide which proof technique (Direct, contrapositive, contradiction) is most appropriate.

Story about Avacados and Guacamole

This image is used with permission from Pixabay. <https://pixabay.com/photos/avocado-salad-fresh-food-829092/>

Proof by contradiction

Proof Technique ($P \implies Q$) - Contradiction

To prove $P \implies Q$, by contradiction: Assume P . Assume $\neg Q$. Derive a contradiction. (Conclude Q .)

We will look at three examples: one mild, one mild, one spicy.

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even and x is odd.

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even “Assume P .” and x is odd

.

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even “Assume P .” and x is odd “Assume $\neg Q$.”

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even “Assume P .” and x is odd “Assume $\neg Q$.”

Since x is even, there is an integer k such that $x = 2k$. Since x is odd, there is an integer m such that $x = 2m + 1$.

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even “Assume P .” and x is odd “Assume $\neg Q$.”

Since x is even, there is an integer k such that $x = 2k$. Since x is odd, there is an integer m such that $x = 2m + 1$.

So $2k = 2m + 1$, and also $2k - 2m = 1$ and $k - m = \frac{1}{2}$.

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even "Assume P ." and x is odd "Assume $\neg Q$."

Since x is even, there is an integer k such that $x = 2k$. Since x is odd, there is an integer m such that $x = 2m + 1$.

So $2k = 2m + 1$, and also $2k - 2m = 1$ and $k - m = \frac{1}{2}$. However, $k - m$ is an integer, and $\frac{1}{2}$ is not. $\Rightarrow \Leftarrow$ □

Example 1

Definitions:

- An integer x is even if and only if $(\exists k \in \mathbb{Z})[x = 2k]$.
- An integer x is odd if and only if $(\exists m \in \mathbb{Z})[x = 2m + 1]$.

Theorem

If x is even, then x is not odd.

Proof.

Assume for the sake of contradiction, that x is even "Assume P ." and x is odd "Assume $\neg Q$."

Since x is even, there is an integer k such that $x = 2k$. Since x is odd, there is an integer m such that $x = 2m + 1$.

So $2k = 2m + 1$, and also $2k - 2m = 1$ and $k - m = \frac{1}{2}$. However, $k - m$ is an integer, and $\frac{1}{2}$ is not. $\Rightarrow \Leftarrow$ Indicates a contradiction □

Example 2

Exercise. Prove the following using a proof by contradiction.

Theorem

There are no natural numbers x, y with $x^2 - y^2 = 1$.

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Proof.

Suppose not.

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Proof.

Suppose not. Let p_1, p_2, \dots, p_n be the list of all prime numbers.

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Proof.

Suppose not. Let p_1, p_2, \dots, p_n be the list of all prime numbers.
Let $N = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n + 1$.

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Proof.

Suppose not. Let p_1, p_2, \dots, p_n be the list of all prime numbers.

Let $N = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n + 1$. By the lemma, there is a p_i so that $p_i|N$.

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Proof.

Suppose not. Let p_1, p_2, \dots, p_n be the list of all prime numbers.

Let $N = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n + 1$. By the lemma, there is a p_i so that $p_i|N$. However, this is impossible, since dividing N by p_i will have a remainder of 1. $\Rightarrow \Leftarrow$

Example 3

Lemma. If $n \in \mathbb{N}$ and $n > 1$, then there is a prime number p such that $p|n$.

Theorem (Proof due to Euclid)

There are infinitely many prime numbers.

Proof.

Suppose not. Let p_1, p_2, \dots, p_n be the list of all prime numbers.

Let $N = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n + 1$. By the lemma, there is a p_i so that $p_i|N$. However, this is impossible, since dividing N by p_i will have a remainder of 1. $\Rightarrow \Leftarrow$

Note the N in this proof is not necessarily prime. E.g.

$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 + 1 = 30031 = (59)(509).$$

Pros and Cons of proof by contradiction

Pros:

- ① It gives you two things to work with (P and $\neg Q$)
- ② Often the proofs are short.

Pros and Cons of proof by contradiction

Pros:

- ① It gives you two things to work with (P and $\neg Q$)
- ② Often the proofs are short.

Cons:

- ① The proofs are not constructive. (e.g. Euclid's proof does not tell you how to make large prime numbers.)
- ② It's not always clear what contradiction to aim for.
- ③ It can make messy/confusing proofs.

What technique should I use?

- ① **Direct.** Is good for “definition unwinding” proofs.
- ② **Contrapositive.** Very similar to direct, but when $\neg Q$ and $\neg P$ are easier to work with. (e.g. $x + y = 0$ is easier to work with than $x + y \neq 0$.)
- ③ **Contradiction.** Good for statements of the form “no weird things exist”. (If the things are sufficiently weird, then assuming it exists should produce a contradiction.)

What technique should I use?

- ① **Direct.** Is good for “definition unwinding” proofs.
- ② **Contrapositive.** Very similar to direct, but when $\neg Q$ and $\neg P$ are easier to work with. (e.g. $x + y = 0$ is easier to work with than $x + y \neq 0$.)
- ③ **Contradiction.** Good for statements of the form “no weird things exist”. (If the things are sufficiently weird, then assuming it exists should produce a contradiction.)

Exercise What technique should you use to prove these statements?

- ① $\sqrt{2}$ is irrational.
- ② $(\forall x \in \mathbb{R})[x > 0 \implies x^2 > 0]$.
- ③ $(\forall x \in \mathbb{R})[x^2 > 0 \implies x \neq 0]$.

What technique should I use?

- ① **Direct.** Is good for “definition unwinding” proofs.
- ② **Contrapositive.** Very similar to direct, but when $\neg Q$ and $\neg P$ are easier to work with. (e.g. $x + y = 0$ is easier to work with than $x + y \neq 0$.)
- ③ **Contradiction.** Good for statements of the form “no weird things exist”. (If the things are sufficiently weird, then assuming it exists should produce a contradiction.)

Exercise What technique should you use to prove these statements?

- ① $\sqrt{2}$ is irrational. **Contradiction**
- ② $(\forall x \in \mathbb{R})[x > 0 \implies x^2 > 0]$.
- ③ $(\forall x \in \mathbb{R})[x^2 > 0 \implies x \neq 0]$.

What technique should I use?

- ① **Direct.** Is good for “definition unwinding” proofs.
- ② **Contrapositive.** Very similar to direct, but when $\neg Q$ and $\neg P$ are easier to work with. (e.g. $x + y = 0$ is easier to work with than $x + y \neq 0$.)
- ③ **Contradiction.** Good for statements of the form “no weird things exist”. (If the things are sufficiently weird, then assuming it exists should produce a contradiction.)

Exercise What technique should you use to prove these statements?

- ① $\sqrt{2}$ is irrational. **Contradiction**
- ② $(\forall x \in \mathbb{R})[x > 0 \implies x^2 > 0]$. **Direct**
- ③ $(\forall x \in \mathbb{R})[x^2 > 0 \implies x \neq 0]$.

What technique should I use?

- ① **Direct.** Is good for “definition unwinding” proofs.
- ② **Contrapositive.** Very similar to direct, but when $\neg Q$ and $\neg P$ are easier to work with. (e.g. $x + y = 0$ is easier to work with than $x + y \neq 0$.)
- ③ **Contradiction.** Good for statements of the form “no weird things exist”. (If the things are sufficiently weird, then assuming it exists should produce a contradiction.)

Exercise What technique should you use to prove these statements?

- ① $\sqrt{2}$ is irrational. **Contradiction**
- ② $(\forall x \in \mathbb{R})[x > 0 \implies x^2 > 0]$. **Direct**
- ③ $(\forall x \in \mathbb{R})[x^2 > 0 \implies x \neq 0]$. **Contrapositive**

Reflection

- What types of proofs are constructive, and which are non-constructive?
- What are the advantages and disadvantages of both?
- What are some reasons why you might want to use proof by contradiction?