

Exam Jam!

MCQ

1. Suppose $f : A \rightarrow B$ and $g : B \rightarrow C$ are functions and $g \circ f$ is injective. Which of the following statement is always true?
(a) f is injective. (b) g is injective. (c) $A = C$

2. Suppose S is a statement form with n variables P_1, P_2, \dots, P_n , where $n \geq 3$. In exactly how many rows of the truth table for S is P_1 false?
(a) 1. (b) 2. (c) 2^{n-1} . (d) 2^n .

3. Suppose S is a statement form with n variables P_1, P_2, \dots, P_n , where $n \geq 3$. In exactly how many rows of the truth table for S is P_1 false while P_2 is true?
(a) 1. (b) 2. (c) 2^{n-1} . (d) 2^{n-2} .

4. Which statement is a tautology?
(a) $P \implies (P \implies Q)$ (c) $(P \implies Q) \iff Q$
(b) $(P \wedge Q) \implies (P \vee R)$ (d) $(P \implies Q) \implies Q$

5. Which of the following statement is always true?
(a) $\{1, 2, 3\} = \{2, 1, 3, 3, 2\}$ (c) $\{5\} \in \{2, 5\}$
(b) $\{5, \emptyset\} = \{5\}$ (d) $\{1, 2\} \subseteq \{3, \{1, 2\}\}$

6. Given two sets A and B , which of the following statement is always true?
(a) $P(A \cup B) = P(A) \cup P(B)$. (c) $P(A \cap B) \subseteq P(A) \cap P(B)$.
(b) $\emptyset \notin P(A) \setminus P(B)$. (d) $P(A \setminus B) \neq P(A)$.

7. How many zeroes would appear on the right side of the number $N = 100!$?

(a) 24 (b) 25 (c) 26 (d) 20

8. Given $|S| = m$ and $|T| = n$ where S and T are two sets, how many functions are there with domain S and codomain T ?

(a) n^m (b) m^n (c) mn (d) $m + n$

Long Answers

1. Prove that every integer n satisfies the congruence $n^3 \equiv n \pmod{6}$.
2. Suppose that $f : \{1, 2, \dots, 2019\} \rightarrow \{0, 1\}$ is a function such that $f(1) = 0$ and $f(2019) = 1$. Prove that there is an $k \in \{1, 2, \dots, 2018\}$ such that $f(k) = 0$ and $f(k+1) = 1$.
3. Let A be a set.
 - (a) Prove that $R = A \times A$ is an equivalence relation on A .
 - (b) Prove that $S = \{(a, a) : a \in A\}$ is an equivalence relation on A .
 - (c) For the above relations, is $R \subseteq S$, $S \subseteq R$ or neither?
4. Given $(k, m) = 1$, show that the following cancellation law holds:

$$ka \equiv kb \pmod{m} \implies a \equiv b \pmod{m}$$

Use this result, prove every integer is congruent modulo m to exactly one of the integers

$$0, k, 2k, \dots, (m-1)k.$$

5. Show that the set $\mathbb{N} \times \mathbb{N}$ can be expressed as the union of a countably infinite family of countably infinite sets.
6. Define $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$:

$$g(m, n) = 2^{m-1}(2n-1)$$

Show that g is a bijection. What does it say about the cardinality of $\mathbb{N} \times \mathbb{N}$?

7. A set A is defined to be “Dedekind infinite” if there exists an injection $f : A \rightarrow A$ that is not a surjection.
 - (a) Prove that \mathbb{N} and \mathbb{R} are Dedekind infinite.
 - (b) Prove that $\{1\}$ is not Dedekind infinite.
 - (c) (**Challenge!**) Prove by induction that for all $n \in \mathbb{N}$ that $\{1, \dots, n\}$ is not Dedekind infinite.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.