

MAT102H5 Y - SUMMER 2020 - QUIZ 3 - SOLUTIONS

SUBMISSION

- You must submit your completed Quiz on Crowdmark by 6:00pm (EDT) Tuesday July 14, 2020.
- Late submissions will not be accepted.
- You should start uploading your quiz no later than 5:45pm.
- If you require additional space, please insert extra pages.
- You do not need to print out this quiz; you may submit clear pictures/scans of your work on lined paper, or screenshots/PDFs of your work.

ADDITIONAL INSTRUCTIONS

You must justify and support your solution to each question.

PERMITTED RESOURCES

During the quiz:

- (1) You may use any resources (course notes, textbook, videos) that have been posted to Quercus by instructors or TAs.
- (2) You may use personal notes related to official course material (from reading the textbook, participating in lectures/tutorials, completing problem sets).
- (3) Do not use personal notes related to other material (e.g. notes created by studying external websites)
- (4) Do not communicate with anyone other than the instructors.
- (5) Do not use Piazza.
- (6) Do not use any online resources other than Quercus and Crowdmark.

ACADEMIC INTEGRITY

By submitting this quiz you affirm that your submission represents entirely your own efforts. You confirm that:

- You have not copied any portion of this work.
- You have not allowed someone else in the course to copy this work.
- You understand the consequences of violating the University's academic integrity policies as outlined in the *Code of Behaviour on Academic Matters*.

PROBLEM 1 [10 POINTS]

A MAT102 student named Jr. Proofini states:

“Reflexivity is not needed in the definition of an equivalence relation, because I can always use symmetry and transitivity to prove reflexivity. Here is my proof:

Since $a \sim b$, by symmetry $b \sim a$, now together with transitivity $a \sim a$.”

(1) What is the logical mistake in his proof?

Solution. The logical mistake is that Jr. Proofini is assuming that there exists a relation $a \sim b$ in the set. Specifically the line “since $a \sim b$ ” does not have to be true.

Grading. This is worth 5 points for the main idea.

(2) Give an example of a relation R on the set $A = \{1, 2, 3\}$ that is symmetric and transitive but not reflexive. (You do not need to prove your assertions.)

Solution. The following examples (and any relabellings of them) work:

- (a) $R = \emptyset$,
- (b) $R = \{(1, 1)\}$
- (c) $R = \{(1, 1), (2, 2)\}$
- (d) $R = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Grading. This is 5 points total. 2 points for giving an example of the correct type (i.e. a collection of pairs of A), and 3 points for it being correct.

PROBLEM 2 [10 POINTS]

In class we proved that given an equivalence relation R on a set A , we can obtain a partition of A by equivalence classes determined by R .

Now we consider the other direction: given a partition, we can create an equivalence relation.

Let $k \in \mathbb{N}$. Suppose that $D = \{A_1, A_2, \dots, A_k\}$ is a given partition of A , i.e.,

$$A = A_1 \cup A_2 \cup \dots \cup A_k; \text{ and}$$

$$A_i \cap A_j = \emptyset, \quad \forall 1 \leq i \neq j \leq k.$$

We define a new relation R_D (or equivalently \sim_D) on A as

$$x \sim_D y \text{ iff } (\exists 1 \leq i \leq k)[x \in A_i \text{ and } y \in A_i].$$

(1) Prove that \sim_D is an equivalence relation on A .

Solution.

Reflexive. Let $a \in A$. By the first property of being a partition, there is an $1 \leq i \leq k$ such that $a \in A_i$. Therefore $a \in A_i$ and $a \in A_i$ and so by definition $a \sim_D a$.

Symmetric. Suppose that $a, b \in A$ are such that $a \sim_D b$. By definition, there is an $1 \leq i \leq k$ such that $a \in A_i$ and $b \in A_i$. Since ‘and’ is symmetric, we have $b \in A_i$ and $a \in A_i$. So $b \sim_D a$.

Transitive. This is similar to symmetry, except it uses that ‘and’ is transitive. (Details omitted.)

Grading. This question is worth 6 points. Each part is worth 2.

(2) Let $A = \{5, 6, 7, 8, 9\}$, $D = \{\{5, 6, 7\}, \{8\}, \{9\}\}$, where $A_1 = \{5, 6, 7\}$, $A_2 = \{8\}$, and $A_3 = \{9\}$. Let \sim_D be the relation constructed in the previous question.

Write down all elements in \sim_D explicitly. (Recall $R_D \subseteq A \times A$.)

Solution. This can be given as a set:

$$R_D = \{(5, 5), (6, 6), (7, 7), (5, 6), (6, 5), (5, 7), (7, 5), (6, 7), (7, 6), (8, 8), (9, 9)\}.$$

Grading. This is worth 4 points. 2 points for a solution of the correct type (a collection of pairs). and 2 points for a correct answer.