

Intro to Proofs - Strong Induction

Prof Mike Pawliuk

UTM

July 16, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives

By the end of this session, participants should be able to:

- ① State the structure of strong induction.
- ② Explain the differences between strong and usual induction.

Motivation

The final variation of induction we will look at is strong induction. This is a version that is used to prove theorems of the form “Every natural number has a [nice] representation.”

It is also used when the induction step depends on many previous steps, and not only the one immediately before it.

1. Proof strategy for strong induction

Strong Induction

If you want to prove a statement of the form " $\forall n \in \mathbb{N}, P(n)$ " you can show:

- ① $P(1)$ is true,
- ② For all $k \in \mathbb{N}, P(1), P(2), \dots, P(k) \implies P(k + 1)$.

1. Proof strategy for strong induction

Strong Induction

If you want to prove a statement of the form " $\forall n \in \mathbb{N}, P(n)$ " you can show:

- ① $P(1)$ is true,
- ② For all $k \in \mathbb{N}, P(1), P(2), \dots, P(k) \implies P(k + 1)$.

Question: How is this different than (simple) induction?

1. Proof strategy for strong induction

Strong Induction

If you want to prove a statement of the form " $\forall n \in \mathbb{N}, P(n)$ " you can show:

- ① $P(1)$ is true,
- ② For all $k \in \mathbb{N}, P(1), P(2), \dots, P(k) \implies P(k + 1)$.

Question: How is this different than (simple) induction?

Math answer: The IH is much stronger.

1. Proof strategy for strong induction

Strong Induction

If you want to prove a statement of the form " $\forall n \in \mathbb{N}, P(n)$ " you can show:

- ① $P(1)$ is true,
- ② For all $k \in \mathbb{N}, P(1), P(2), \dots, P(k) \implies P(k + 1)$.

Question: How is this different than (simple) induction?

Math answer: The IH is much stronger.

CS answer: This requires a lot more memory since you need to remember all your previous work.

2. Example

Theorem

Every natural number $n \geq 2$ can be written as a product of primes.

2. Example

Theorem

Every natural number $n \geq 2$ can be written as a product of primes.

Examples

- $12 =$
- $7 =$
- $5! =$

2. Example

Theorem

Every natural number $n \geq 2$ can be written as a product of primes.

Examples

- $12 = 3 \cdot 2^2$
- $7 =$
- $5! =$

2. Example

Theorem

Every natural number $n \geq 2$ can be written as a product of primes.

Examples

- $12 = 3 \cdot 2^2$
- $7 = 7$
- $5! =$

2. Example

Theorem

Every natural number $n \geq 2$ can be written as a product of primes.

Examples

- $12 = 3 \cdot 2^2$
- $7 = 7$
- $5! = 5 \cdot 3 \cdot 2^3$

2. Example

Theorem

Every natural number $n \geq 2$ can be written as a product of primes.

Proof.

By strong induction. Let $P(n)$ be “ n can be written as a product of primes.”

2. Example

Theorem

Every natural number $n \geq 2$ can be written as a product of primes.

Proof.

By strong induction. Let $P(n)$ be “ n can be written as a product of primes.”

Base, $n = 2$ Notice 2 is a product of one prime. .

2. Example

Proof.

Induction step. Assume $P(2), P(3), \dots, P(n)$ are true for a particular $n \in \mathbb{N}$.

2. Example

Proof.

Induction step. Assume $P(2), P(3), \dots, P(n)$ are true for a particular $n \in \mathbb{N}$.

Case 1: If $n + 1$ is prime,

2. Example

Proof.

Induction step. Assume $P(2), P(3), \dots, P(n)$ are true for a particular $n \in \mathbb{N}$.

Case 1: If $n + 1$ is prime, then it is the product of one prime.

2. Example

Proof.

Induction step. Assume $P(2), P(3), \dots, P(n)$ are true for a particular $n \in \mathbb{N}$.

Case 1: If $n + 1$ is prime, then it is the product of one prime.

Case 2: If $n + 1$ is not prime, then there are $a, b \in \mathbb{N}$ with $ab = n + 1$ and $1 < a, b < N + 1$.

2. Example

Proof.

Induction step. Assume $P(2), P(3), \dots, P(n)$ are true for a particular $n \in \mathbb{N}$.

Case 1: If $n + 1$ is prime, then it is the product of one prime.

Case 2: If $n + 1$ is not prime, then there are $a, b \in \mathbb{N}$ with $ab = n + 1$ and $1 < a, b < N + 1$.

By $P(a)$, a can be written as a product of primes. By $P(b)$, b can be written as a product of primes.

2. Example

Proof.

Induction step. Assume $P(2), P(3), \dots, P(n)$ are true for a particular $n \in \mathbb{N}$.

Case 1: If $n + 1$ is prime, then it is the product of one prime.

Case 2: If $n + 1$ is not prime, then there are $a, b \in \mathbb{N}$ with $ab = n + 1$ and $1 < a, b < N + 1$.

By $P(a)$, a can be written as a product of primes. By $P(b)$, b can be written as a product of primes.

So $n + 1 = ab$ can be written as a product of primes.

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

- ① Is 300 prime?

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

- ① Is 300 prime? No. $300 = 3 \cdot 100$.

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

- ① Is 300 prime? No. $300 = 3 \cdot 100$.
- ② Are 3 and 100 prime?

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

- ➊ Is 300 prime? No. $300 = 3 \cdot 100$.
- ➋ Are 3 and 100 prime? 3, yes, so stop. 100, no, $100 = 4 \cdot 25$.

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

- ➊ Is 300 prime? No. $300 = 3 \cdot 100$.
- ➋ Are 3 and 100 prime? 3, yes, so stop. 100, no, $100 = 4 \cdot 25$.
- ➌ $4 = 2 \cdot 2$ and $25 = 5 \cdot 5$. (and 2, 5 are prime).

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

- ➊ Is 300 prime? No. $300 = 3 \cdot 100$.
- ➋ Are 3 and 100 prime? 3, yes, so stop. 100, no, $100 = 4 \cdot 25$.
- ➌ $4 = 2 \cdot 2$ and $25 = 5 \cdot 5$. (and 2, 5 are prime).

So

$$300 = [3] \cdot [100] = 3 \cdot [4] \cdot [25] = 3 \cdot 2 \cdot 2 \cdot 5 \cdot 5.$$

3. Reversing this proof

Question

How does this proof tell us how to write 300 as a product of primes?

- ➊ Is 300 prime? No. $300 = 3 \cdot 100$.
- ➋ Are 3 and 100 prime? 3, yes, so stop. 100, no, $100 = 4 \cdot 25$.
- ➌ $4 = 2 \cdot 2$ and $25 = 5 \cdot 5$. (and 2, 5 are prime).

So

$$300 = [3] \cdot [100] = 3 \cdot [4] \cdot [25] = 3 \cdot 2 \cdot 2 \cdot 5 \cdot 5.$$

Note

To show $P(300)$ we needed to use $P(3)$ and $P(100)$, not $P(299)$.

4. Binary Representation

Theorem

Every natural number $n \geq 1$ can be represented as a sum of distinct, non-negative integer powers of 2.

4. Binary Representation

Theorem

Every natural number $n \geq 1$ can be represented as a sum of distinct, non-negative integer powers of 2.

Example

- $48 = 16 + 32 = 2^4 + 2^5$
- $7 = 1 + 2 + 4 = 2^0 + 2^1 + 2^2$.

4. Binary Representation

Theorem

Every natural number $n \geq 1$ can be represented as a sum of distinct, non-negative integer powers of 2.

Example

- $48 = 16 + 32 = 2^4 + 2^5$
- $7 = 1 + 2 + 4 = 2^0 + 2^1 + 2^2$.

I'll complete the proof in a video, or you can read it in the textbook.

Reflection

- What are the differences between simple induction and strong induction?
- Were our proofs about the Fibonacci numbers really “strong” induction? How much memory did they use?
- Why do you think that the binary representation theorem is a good candidate to prove using strong induction?