

Intro to Proofs - Binary Representation

Prof Mike Pawliuk

UTM

July 21, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives

By the end of this session, participants should be able to:

- ① Produce a valid binary representation of a positive integer, by using recursion.

1. Strong induction

Strong Induction

If you want to prove a statement of the form " $\forall n \in \mathbb{N}, P(n)$ " you can show:

- ① $P(1)$ is true,
- ② For all $k \in \mathbb{N}, P(1), P(2), \dots, P(k) \implies P(k + 1)$.

1. Strong induction

Strong Induction

If you want to prove a statement of the form " $\forall n \in \mathbb{N}, P(n)$ " you can show:

- ① $P(1)$ is true,
- ② For all $k \in \mathbb{N}, P(1), P(2), \dots, P(k) \implies P(k + 1)$.

2. Binary Representation

Theorem

Every natural number $n \geq 1$ can be represented as a sum of distinct, non-negative integer powers of 2.

2. Binary Representation

Theorem

Every natural number $n \geq 1$ can be represented as a sum of distinct, non-negative integer powers of 2.

Example

$$24 = 8 + 16 = 2^3 + 2^4$$

$$48 = 16 + 32 = 2^4 + 2^5$$

$$6 = 2 + 4 = 2^1 + 2^2$$

$$7 = 1 + 2 + 4 = 2^0 + 2^1 + 2^2$$

2. Binary Representation

Theorem

Every natural number $n \geq 1$ can be represented as a sum of distinct, non-negative integer powers of 2.

Example

$$24 = 8 + 16 = 2^3 + 2^4$$

$$48 = 16 + 32 = 2^4 + 2^5$$

$$6 = 2 + 4 = 2^1 + 2^2$$

$$7 = 1 + 2 + 4 = 2^0 + 2^1 + 2^2$$

Major idea: Odd numbers $n + 1$ relate to n by adding 2^0 . Even numbers $n + 1$ relate to $\frac{n+1}{2}$ by removing one from each power.

3. Proof

Proof. We use strong induction.

Base Note that $1 = 2^0$, which is a valid binary representation.

3. Proof

Proof. We use strong induction.

Base Note that $1 = 2^0$, which is a valid binary representation.

Induction Suppose that $1, 2, \dots, n$ all have valid binary representations for a particular $n \in \mathbb{N}$.

(Continued ...)

3. Proof

Example, $n = 6$

- $6 = 2^1 + 2^2$
- $7 = 2^0 + 2^1 + 2^2$.

Case 1, n is even

3. Proof

Example, $n = 6$

- $6 = 2^1 + 2^2$
- $7 = 2^0 + 2^1 + 2^2$.

Case 1, n is even By the IH, n has a valid binary representation

$$n = 2^{a_1} + \dots + 2^{a_k},$$

where $a_1, a_2, \dots, a_k \geq 0$.

3. Proof

Example, $n = 6$

- $6 = 2^1 + 2^2$
- $7 = 2^0 + 2^1 + 2^2$.

Case 1, n is even By the IH, n has a valid binary representation

$$n = 2^{a_1} + \dots + 2^{a_k},$$

where $a_1, a_2, \dots, a_k \geq 0$. Since n is even, in fact, none of the exponents are 0.

3. Proof

Example, $n = 6$

- $6 = 2^1 + 2^2$
- $7 = 2^0 + 2^1 + 2^2$.

Case 1, n is even By the IH, n has a valid binary representation

$$n = 2^{a_1} + \dots + 2^{a_k},$$

where $a_1, a_2, \dots, a_k \geq 0$. Since n is even, in fact, none of the exponents are 0. Therefore

$$n + 1 = 2^0 + 2^{a_1} + \dots + 2^{a_k},$$

which is a valid binary representation.

3. Proof

Example, $n = 47$

$n + 1 = 48 = 2(24)$, and

- $24 = 2^3 + 2^4$
- $48 = 2^4 + 2^5$

Case 2, n is odd

3. Proof

Example, $n = 47$

$n + 1 = 48 = 2(24)$, and

- $24 = 2^3 + 2^4$
- $48 = 2^4 + 2^5$

Case 2, n is odd So $n + 1$ is even, and there is a (positive) integer m , with $n + 1 = 2m$.

3. Proof

Example, $n = 47$

$n + 1 = 48 = 2(24)$, and

- $24 = 2^3 + 2^4$
- $48 = 2^4 + 2^5$

Case 2, n is odd So $n + 1$ is even, and there is a (positive) integer m , with $n + 1 = 2m$. By the IH, m has a valid binary representation

$$m = 2^{a_1} + \dots + 2^{a_k},$$

where $a_1, a_2, \dots, a_k \geq 0$.

Therefore

$$n + 1 = 2m = 2(2^{a_1} + \dots + 2^{a_k}) = 2^{a_1+1} + \dots + 2^{a_k+1},$$

which is a valid binary representation.

Reflection

- Why did we use a_1, a_2, \dots, a_k for the exponents in this proof? Is there a simpler way to prove this?
- In case 2, how did we know that $1 \leq m \leq n$?
- Are there multiple ways to represent a number in binary?
- Extract a construction from the proof that produces the binary representation of 52.