

Introduction to Proofs - Injections, Surjections, and Bijections

Prof Mike Pawliuk

UTM

July 21, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Check that a function is 1-1 or onto, and produce counterexamples when it isn't.
- ② Give multiple equivalent definitions of injection and surjection.

Motivation

Injections are special types of functions that don't have any "compression".
Injections will be exactly the types of functions that have inverse functions.

Motivation

Motivation

Injections are special types of functions that don't have any "compression".
Injections will be exactly the types of functions that have inverse functions.

Motivation

Injections will also be used for formally measuring how many elements are in a set (in the countability section).

e.g. Which has more elements: \mathbb{Z} or $(0, +\infty)$?

1. Function review

Question. What is the defining characteristic of being a function?

1. Function review

Question. What is the defining characteristic of being a function?

Answer: It must not send an input to two outputs.

1. Function review

Question. What is the defining characteristic of being a function?

Answer: It must not send an input to two outputs.

Example

$f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = x^2$ is a function.

1. Function review

Question. What is the defining characteristic of being a function?

Answer: It must not send an input to two outputs.

Example

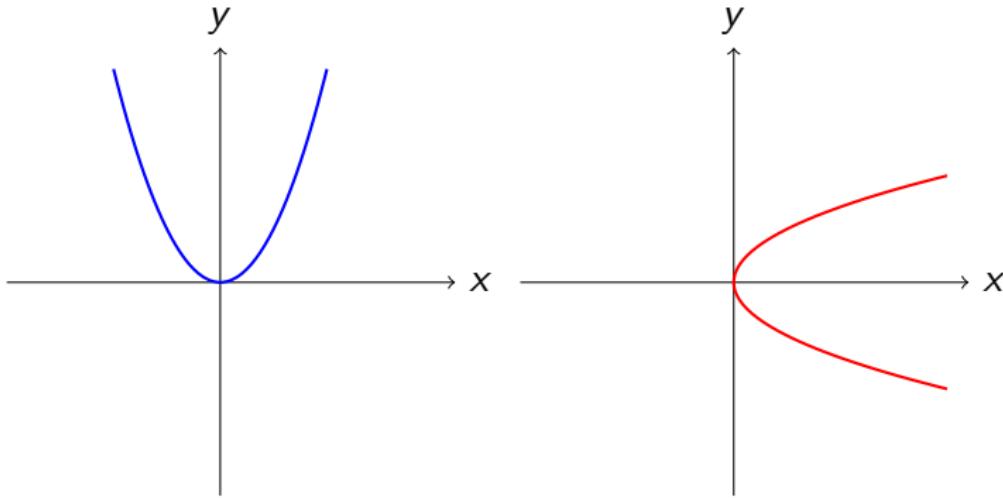
$f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = x^2$ is a function.

Non example

$g(x) = \pm\sqrt{x}$ is not a function, as $g(2)$ is both $\sqrt{2}$ and $-\sqrt{2}$.

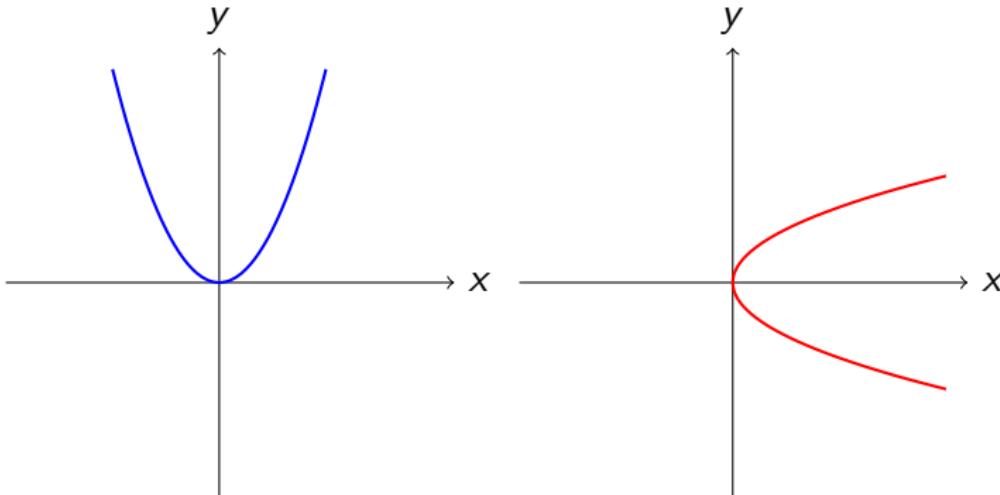
1. Function review

Informally: “A function passes the vertical line test (VLT).”



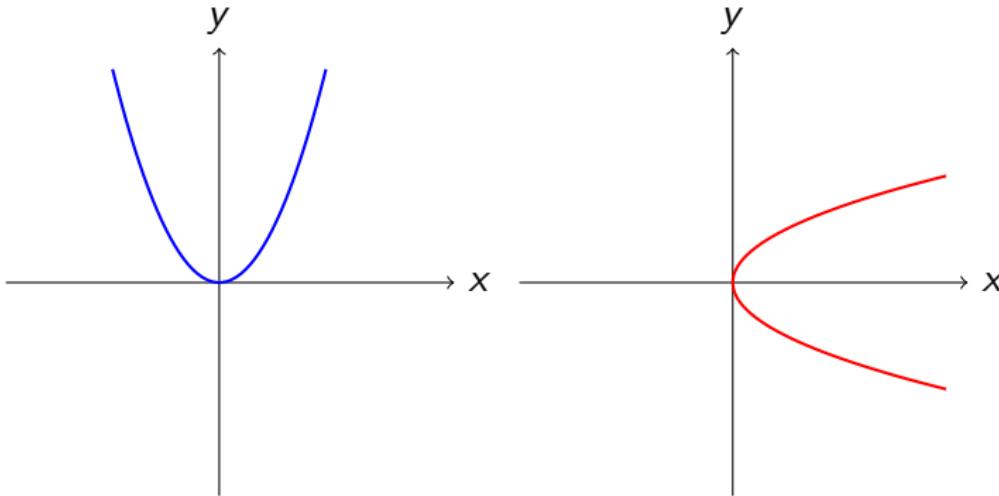
2. Motivation

Question: When can we invert/undo functions?



2. Motivation

Question: When can we invert/undo functions?



Observation

When the original function fails the “horizontal line test”, then the reflection will fail the vertical line test.

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Injection)

We say that f is an injection (or is injective, or is one-to-one) if

$\forall b \in B$, there is at most one $a \in A$ with $f(a) = b$.

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Injection)

We say that f is an injection (or is injective, or is one-to-one) if

$\forall b \in B$, there is at most one $a \in A$ with $f(a) = b$.

In this case we say “ f passes the Horizontal Line Test”.

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Injection)

We say that f is an injection (or is injective, or is one-to-one) if

$\forall b \in B$, there is at most one $a \in A$ with $f(a) = b$.

In this case we say “ f passes the Horizontal Line Test”.

Negation of injection

A function $f : A \rightarrow B$ is not injective if

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Injection)

We say that f is an injection (or is injective, or is one-to-one) if

$\forall b \in B$, there is at most one $a \in A$ with $f(a) = b$.

In this case we say “ f passes the Horizontal Line Test”.

Negation of injection

A function $f : A \rightarrow B$ is not injective if

$\exists b \in B, \exists a_1, a_2 \in A$, such that $a_1 \neq a_2$ and $f(a_1) = b = f(a_2)$.

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Surjection)

We say that f is a surjection (or is surjective, or is onto) if

$\forall b \in B$, there is at least one $a \in A$ with $f(a) = b$.

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Surjection)

We say that f is a surjection (or is surjective, or is onto) if

$\forall b \in B$, there is at least one $a \in A$ with $f(a) = b$.

(i.e. “Everything in B is reached.”)

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Surjection)

We say that f is a surjection (or is surjective, or is onto) if

$\forall b \in B$, there is at least one $a \in A$ with $f(a) = b$.

(i.e. “Everything in B is reached.”)

Negation of surjection

A function $f : A \rightarrow B$ is not surjective if

3. Definitions

Let $f : A \rightarrow B$ be a function.

Definition (Surjection)

We say that f is a surjection (or is surjective, or is onto) if

$\forall b \in B$, there is at least one $a \in A$ with $f(a) = b$.

(i.e. “Everything in B is reached.”)

Negation of surjection

A function $f : A \rightarrow B$ is not surjective if

$\exists b \in B, \forall a \in A, f(a) \neq b$.

3. Definitions

Let $f : A \rightarrow B$ be a function.

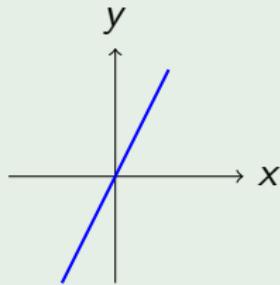
Definition (Bijection)

We say that f is a bijection (or is bijective) if it is one-to-one and onto.

4. Examples

Example 1

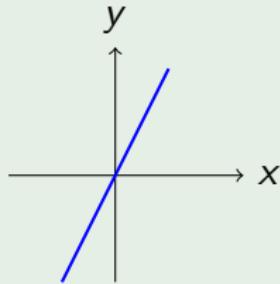
Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = 2x$.



4. Examples

Example 1

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = 2x$.

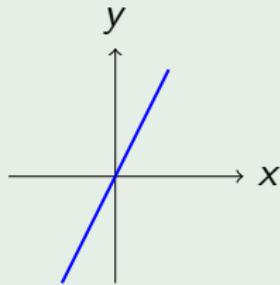


one-to-one Suppose $a_1, a_2 \in A$ are such that $f(a_1) = f(a_2)$.

4. Examples

Example 1

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = 2x$.

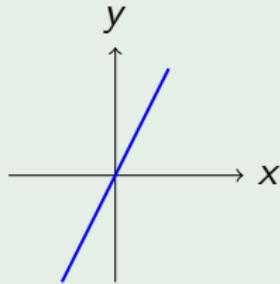


one-to-one Suppose $a_1, a_2 \in A$ are such that $f(a_1) = f(a_2)$.
So $2a_1 = 2a_2$, so $a_1 = a_2$.

4. Examples

Example 1

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = 2x$.



one-to-one Suppose $a_1, a_2 \in A$ are such that $f(a_1) = f(a_2)$.

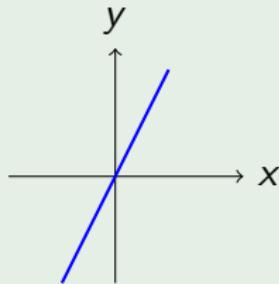
So $2a_1 = 2a_2$, so $a_1 = a_2$.

onto Let $b \in B$. Note $f\left(\frac{b}{2}\right) = 2\left(\frac{b}{2}\right) = b$.

4. Examples

Example 1

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = 2x$.



one-to-one Suppose $a_1, a_2 \in A$ are such that $f(a_1) = f(a_2)$.

So $2a_1 = 2a_2$, so $a_1 = a_2$.

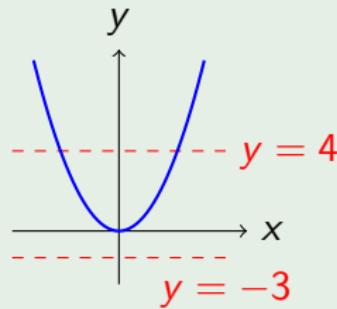
onto Let $b \in B$. Note $f\left(\frac{b}{2}\right) = 2\left(\frac{b}{2}\right) = b$.

So f is a bijection.

4. Examples

Example 2

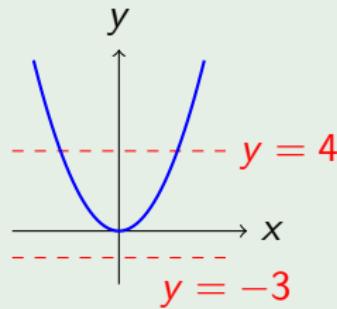
Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x) = x^2$.



4. Examples

Example 2

Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x) = x^2$.

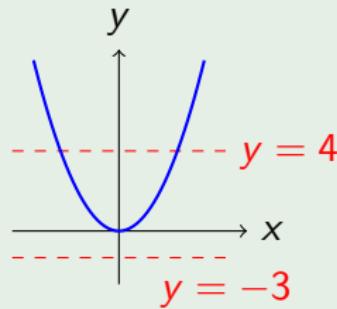


Not one-to-one $f(-2) = 4 = f(2)$, and $-2 \neq 2$. (Fails HLT.)

4. Examples

Example 2

Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x) = x^2$.



Not one-to-one $f(-2) = 4 = f(2)$, and $-2 \neq 2$. (Fails HLT.)

Not onto As $-3 \in \text{codom}(f) = \mathbb{R}$, but there is not $x \in \mathbb{R}$ with $x^2 = -3$.

5. Exercises

Exercise 1

- ① Find a function $f : \mathbb{R} \rightarrow \mathbb{R}$ that is onto, but not one-to-one.
- ② Find a functions $g : \mathbb{R} \rightarrow \mathbb{R}$ that is one-to-one, but not onto.

Exercise 2

- ① Show that the polynomial $p : \mathbb{R} \rightarrow \mathbb{R}$ defined by $p(x) = (x - 1)(x - 2)$ is not an injection.
- ② Prove that if a polynomial has more than one root, then it is not injective.
- ③ Prove that even functions are not injective. (Def: $\forall x \in \text{dom}(f) = \mathbb{R}, f(-x) = f(x).$)
- ④ Prove that any even degree polynomial will not be an injection.

6. Functions as arrow diagrams

Exercise 3

Write/find/draw four different arrow diagrams $\{1, 2, 3\} \rightarrow \{4, 5, 6\}$ as so that

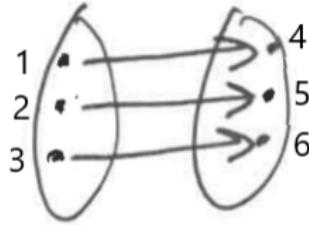
- ① One is a bijection.
- ② One is not injective.
- ③ One is not a function.
- ④ One is not onto, but is one-to-one. [Trick question.]

6. Functions as arrow diagrams

Exercise 3

Write/find/draw four different arrow diagrams $\{1, 2, 3\} \rightarrow \{4, 5, 6\}$ as so that

- ① One is a bijection.
- ② One is not injective.
- ③ One is not a function.
- ④ One is not onto, but is one-to-one. [Trick question.]



7. Better definitions

Here $f : A \rightarrow B$ is a function.

Theorem 1

The following are equivalent (TFAE):

- ① f is one-to-one.
- ② $\forall a_1, a_2 \in A$: If $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.

7. Better definitions

Here $f : A \rightarrow B$ is a function.

Theorem 1

The following are equivalent (TFAE):

- ① f is one-to-one.
- ② $\forall a_1, a_2 \in A$: If $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.
("f is two-to-two")

7. Better definitions

Here $f : A \rightarrow B$ is a function.

Theorem 1

The following are equivalent (TFAE):

- ① f is one-to-one.
- ② $\forall a_1, a_2 \in A$: If $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.
("f is two-to-two")
- ③ $\forall a_1, a_2 \in A$: If $f(a_1) = f(a_2)$, then $a_1 = a_2$.

7. Better definitions

Here $f : A \rightarrow B$ is a function.

Theorem 1

The following are equivalent (TFAE):

- ① f is one-to-one.
- ② $\forall a_1, a_2 \in A$: If $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.
("f is two-to-two")
- ③ $\forall a_1, a_2 \in A$: If $f(a_1) = f(a_2)$, then $a_1 = a_2$.
(This is the best version.)

7. Better definitions

Here $f : A \rightarrow B$ is a function.

Theorem 2

The following are equivalent (TFAE):

- ① f is onto.
- ② $\text{range}(f) = \text{codom}(f)$.

7. Better definitions

Here $f : A \rightarrow B$ is a function.

Theorem 2

The following are equivalent (TFAE):

- ① f is onto.
- ② $\text{range}(f) = \text{codom}(f)$.

Theorem 3

The following are equivalent (TFAE):

- ① f is a bijection.
- ② For each $b \in B$, there is exactly one $a \in A$ with $f(a) = b$.

Reflection

- What is the difference between the horizontal line test and the vertical line test.
- What is the difference between checking that something is a function, versus checking that it is an injection?
- What do the following things look like on an arrow diagram: a surjection, not an injection, not a surjection.