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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 Produce the inverse of a simple function.
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Motivation

Motivation

We know that x2 and
√
x are “inverse” functions because they “undo”

each other.
What does this mean precisely? How do we find inverse functions? When
do inverse functions exist?
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1. Definition

Definition

Let f : A→ B be a bijection. The inverse of f is the function g :

B

→

A

that assigns to any b ∈ B the unique a ∈ A such that f (a) = b.

Denote this g as f −1.

Note 1

f (a) = b ⇔ f −1(b) = a

Note 2

1 f −1(f (

a

)) =

a

for all

a ∈ A

2 f (f −1(

b

)) =

b

for all

b ∈ B
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2. Examples

Example 1

x2 and
√
x are inverses of each other

f : [0,∞)→ [0,∞) with f (x) = x2

f −1 : [0,∞)→ [0,∞) with f (x) =
√
x

Question: Why did we restrict the domain of x2 to [0,∞)?
Answer: So that it would pass the horizontal line test (HLT), and its
inverse would pass the vertical line test (VLT) and be a function.
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2. Examples

Example 2

ex and ln x are inverses of each other

f : R→ (0,∞) with f (x) = ex

f −1 : (0,∞)→ R with f −1(x) = ln x

x

y
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3. When does a function have a inverse?

1 A function needs to pass the HLT for its inverse to pass the VLT.

2 A function needs to reach all values in B in order for its inverse to be
defined on all of B.

Theorem

Let f : A→ B be a function. The following are equivalent:

1 f is one-to-one and f is onto.

2 f −1 exists and is defined on all of B.
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4. More examples

Example 2

Let f : {1, 2, 3} → {a, b, c} be defined by f (1) = a, f (2) = c and
f (3) = b.
Then f −1 :

{a, b, c}

→

{1, 2, 3}

is the function

f −1(

a

) =

1

,

f −1(

b

) =

3

,

f −1(

c

) =

2

1

2

3

a

b

c

1

2

3

a

b

c

Adapted with permission of Alain Matthes. https://tex.stackexchange.com/a/19996 CC BY-SA 3.0
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4. More examples

Example 2

Let h : R \ {−1} → R \ {1} be defined by h(x) =
x

x + 1
.

This function h is a bijection.

one-to-one . Let h(a) = h(b). (Show a = b.)

So
a

a + 1
=

b

b + 1
.

So a(b + 1) = b(a + 1), and so ab + a = ba + b.

So a = b.
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4. More examples

Inverse . Isolate for x in terms of y .

Start with y =
x

x + 1
, and so y(x + 1) = x .

So yx + y = x .

So y = x − yx , and y = x(1− y).

So
y

1− y
= x . h−1(y) =

y

1− y
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4. More examples

Onto . Let y ∈ R \ {1}. So y 6= 1.

Let x =
y

1− y
. Exercise: Show x ∈ dom(h).

Now compute

h(x) = h

(
y

1− y

)
=

y

1− y
y

1− y
+ 1

= . . . = y
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Reflection

What is the role of the HLT and VLT in finding the inverse of a
function?

What is the difference between f (f −1(y)) and f −1(f (x))?

How does finding the inverse of a function relate to showing that it is
surjective?
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