

Introduction to Proofs - Inverse functions

Prof Mike Pawliuk

UTM

July 23, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- 1 Produce the inverse of a simple function.

Motivation

We know that x^2 and \sqrt{x} are “inverse” functions because they “undo” each other.

What does this mean precisely? How do we find inverse functions? When do inverse functions exist?

1. Definition

Definition

Let $f : A \rightarrow B$ be a bijection. The inverse of f is the function $g : B \rightarrow A$ that assigns to any $b \in B$ the unique $a \in A$ such that $f(a) = b$.

1. Definition

Definition

Let $f : A \rightarrow B$ be a bijection. The inverse of f is the function $g : B \rightarrow A$ that assigns to any $b \in B$ the unique $a \in A$ such that $f(a) = b$.

1. Definition

Definition

Let $f : A \rightarrow B$ be a bijection. The inverse of f is the function $g : B \rightarrow A$ that assigns to any $b \in B$ the unique $a \in A$ such that $f(a) = b$. Denote this g as f^{-1} .

1. Definition

Definition

Let $f : A \rightarrow B$ be a bijection. The inverse of f is the function $g : B \rightarrow A$ that assigns to any $b \in B$ the unique $a \in A$ such that $f(a) = b$. Denote this g as f^{-1} .

Note 1

$$f(a) = b \Leftrightarrow f^{-1}(b) = a$$

1. Definition

Definition

Let $f : A \rightarrow B$ be a bijection. The inverse of f is the function $g : B \rightarrow A$ that assigns to any $b \in B$ the unique $a \in A$ such that $f(a) = b$. Denote this g as f^{-1} .

Note 1

$$f(a) = b \Leftrightarrow f^{-1}(b) = a$$

Note 2

- ① $f^{-1}(f(\quad)) = \quad$ for all
- ② $f(f^{-1}(\quad)) = \quad$ for all

1. Definition

Definition

Let $f : A \rightarrow B$ be a bijection. The inverse of f is the function $g : B \rightarrow A$ that assigns to any $b \in B$ the unique $a \in A$ such that $f(a) = b$. Denote this g as f^{-1} .

Note 1

$$f(a) = b \Leftrightarrow f^{-1}(b) = a$$

Note 2

- ① $f^{-1}(f(a)) = a$ for all $a \in A$
- ② $f(f^{-1}(\quad)) = \quad$ for all

1. Definition

Definition

Let $f : A \rightarrow B$ be a bijection. The inverse of f is the function $g : B \rightarrow A$ that assigns to any $b \in B$ the unique $a \in A$ such that $f(a) = b$. Denote this g as f^{-1} .

Note 1

$$f(a) = b \Leftrightarrow f^{-1}(b) = a$$

Note 2

- ① $f^{-1}(f(a)) = a$ for all $a \in A$
- ② $f(f^{-1}(b)) = b$ for all $b \in B$

2. Examples

Example 1

x^2 and \sqrt{x} are inverses of each other

- $f : [0, \infty) \rightarrow [0, \infty)$ with $f(x) = x^2$
- $f^{-1} : [0, \infty) \rightarrow [0, \infty)$ with $f(x) = \sqrt{x}$

2. Examples

Example 1

x^2 and \sqrt{x} are inverses of each other

- $f : [0, \infty) \rightarrow [0, \infty)$ with $f(x) = x^2$
- $f^{-1} : [0, \infty) \rightarrow [0, \infty)$ with $f(x) = \sqrt{x}$

Question: Why did we restrict the domain of x^2 to $[0, \infty)$?

2. Examples

Example 1

x^2 and \sqrt{x} are inverses of each other

- $f : [0, \infty) \rightarrow [0, \infty)$ with $f(x) = x^2$
- $f^{-1} : [0, \infty) \rightarrow [0, \infty)$ with $f(x) = \sqrt{x}$

Question: Why did we restrict the domain of x^2 to $[0, \infty)$?

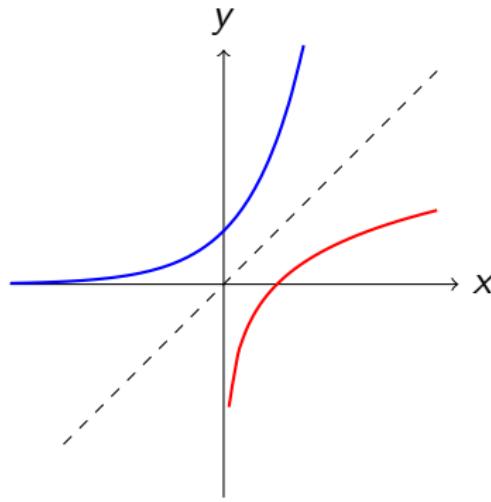
Answer: So that it would pass the horizontal line test (HLT), and its inverse would pass the vertical line test (VLT) and be a function.

2. Examples

Example 2

e^x and $\ln x$ are inverses of each other

- $f : \mathbb{R} \rightarrow (0, \infty)$ with $f(x) = e^x$
- $f^{-1} : (0, \infty) \rightarrow \mathbb{R}$ with $f^{-1}(x) = \ln x$



3. When does a function have a inverse?

- ① A function needs to pass the HLT for its inverse to pass the VLT.

3. When does a function have a inverse?

- ① A function needs to pass the HLT for its inverse to pass the VLT.
- ② A function needs to reach all values in B in order for its inverse to be defined on all of B .

3. When does a function have a inverse?

- ① A function needs to pass the HLT for its inverse to pass the VLT.
- ② A function needs to reach all values in B in order for its inverse to be defined on all of B .

Theorem

Let $f : A \rightarrow B$ be a function. The following are equivalent:

- ① f is one-to-one and f is onto.
- ② f^{-1} exists and is defined on all of B .

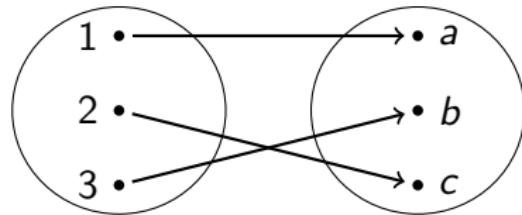
4. More examples

Example 2

Let $f : \{1, 2, 3\} \rightarrow \{a, b, c\}$ be defined by $f(1) = a$, $f(2) = c$ and $f(3) = b$.

Then $f^{-1} : \quad \rightarrow \quad$ is the function

- $f^{-1}() = \text{ } ,$
- $f^{-1}() = \text{ } ,$
- $f^{-1}() = \text{ } ,$



Adapted with permission of Alain Matthes. <https://tex.stackexchange.com/a/19996> CC BY-SA 3.0

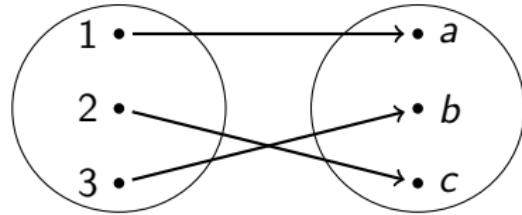
4. More examples

Example 2

Let $f : \{1, 2, 3\} \rightarrow \{a, b, c\}$ be defined by $f(1) = a$, $f(2) = c$ and $f(3) = b$.

Then $f^{-1} : \{a, b, c\} \rightarrow \{1, 2, 3\}$ is the function

- $f^{-1}(a) = \text{ } ,$
- $f^{-1}(b) = \text{ } ,$
- $f^{-1}(c) = \text{ } ,$



Adapted with permission of Alain Matthes. <https://tex.stackexchange.com/a/19996> CC BY-SA 3.0

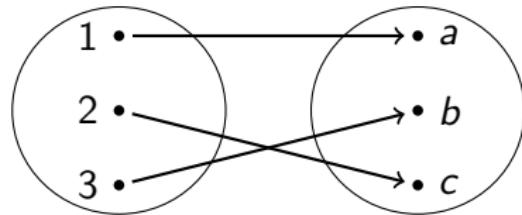
4. More examples

Example 2

Let $f : \{1, 2, 3\} \rightarrow \{a, b, c\}$ be defined by $f(1) = a$, $f(2) = c$ and $f(3) = b$.

Then $f^{-1} : \{a, b, c\} \rightarrow \{1, 2, 3\}$ is the function

- $f^{-1}(a) = 1$,
- $f^{-1}(b) = 3$,
- $f^{-1}(c) = 2$



Adapted with permission of Alain Matthes. <https://tex.stackexchange.com/a/19996> CC BY-SA 3.0

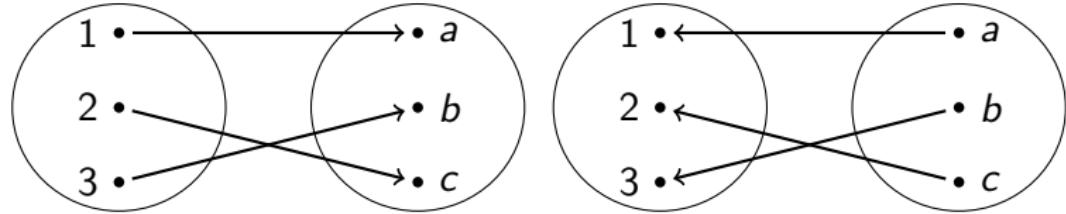
4. More examples

Example 2

Let $f : \{1, 2, 3\} \rightarrow \{a, b, c\}$ be defined by $f(1) = a$, $f(2) = c$ and $f(3) = b$.

Then $f^{-1} : \{a, b, c\} \rightarrow \{1, 2, 3\}$ is the function

- $f^{-1}(a) = 1$,
- $f^{-1}(b) = 3$,
- $f^{-1}(c) = 2$



Adapted with permission of Alain Matthes. <https://tex.stackexchange.com/a/19996> CC BY-SA 3.0

4. More examples

Example 2

Let $h : \mathbb{R} \setminus \{-1\} \rightarrow \mathbb{R} \setminus \{1\}$ be defined by $h(x) = \frac{x}{x+1}$.

This function h is a bijection.

4. More examples

Example 2

Let $h : \mathbb{R} \setminus \{-1\} \rightarrow \mathbb{R} \setminus \{1\}$ be defined by $h(x) = \frac{x}{x+1}$.

This function h is a bijection.

one-to-one. Let $h(a) = h(b)$. (Show $a = b$.)

4. More examples

Example 2

Let $h : \mathbb{R} \setminus \{-1\} \rightarrow \mathbb{R} \setminus \{1\}$ be defined by $h(x) = \frac{x}{x+1}$.

This function h is a bijection.

one-to-one. Let $h(a) = h(b)$. (Show $a = b$.)

$$\text{So } \frac{a}{a+1} = \frac{b}{b+1}.$$

4. More examples

Example 2

Let $h : \mathbb{R} \setminus \{-1\} \rightarrow \mathbb{R} \setminus \{1\}$ be defined by $h(x) = \frac{x}{x+1}$.

This function h is a bijection.

one-to-one. Let $h(a) = h(b)$. (Show $a = b$.)

$$\text{So } \frac{a}{a+1} = \frac{b}{b+1}.$$

So $a(b+1) = b(a+1)$, and so $ab + a = ba + b$.

4. More examples

Example 2

Let $h : \mathbb{R} \setminus \{-1\} \rightarrow \mathbb{R} \setminus \{1\}$ be defined by $h(x) = \frac{x}{x+1}$.

This function h is a bijection.

one-to-one. Let $h(a) = h(b)$. (Show $a = b$.)

$$\text{So } \frac{a}{a+1} = \frac{b}{b+1}.$$

So $a(b+1) = b(a+1)$, and so $ab + a = ba + b$.

So $a = b$.

4. More examples

Inverse. Isolate for x in terms of y .

4. More examples

Inverse. Isolate for x in terms of y .

Start with $y = \frac{x}{x+1}$, and so $y(x+1) = x$.

4. More examples

Inverse. Isolate for x in terms of y .

Start with $y = \frac{x}{x+1}$, and so $y(x+1) = x$.

So $yx + y = x$.

4. More examples

Inverse. Isolate for x in terms of y .

Start with $y = \frac{x}{x+1}$, and so $y(x+1) = x$.

So $yx + y = x$.

So $y = x - yx$, and $y = x(1 - y)$.

4. More examples

Inverse. Isolate for x in terms of y .

Start with $y = \frac{x}{x+1}$, and so $y(x+1) = x$.

So $yx + y = x$.

So $y = x - yx$, and $y = x(1 - y)$.

So $\frac{y}{1 - y} = x$. **$h^{-1}(y) = \frac{y}{1 - y}$**

4. More examples

Onto. Let $y \in \mathbb{R} \setminus \{1\}$. So $y \neq 1$.

4. More examples

[Onto]. Let $y \in \mathbb{R} \setminus \{1\}$. So $y \neq 1$.

Let $x = \frac{y}{1-y}$. [Exercise: Show $x \in \text{dom}(h)$.]

4. More examples

[Onto]. Let $y \in \mathbb{R} \setminus \{1\}$. So $y \neq 1$.

Let $x = \frac{y}{1-y}$. [Exercise: Show $x \in \text{dom}(h)$.]

Now compute

$$h(x) = h\left(\frac{y}{1-y}\right) = \frac{\frac{y}{1-y}}{\frac{y}{1-y} + 1} = \dots = y$$

Reflection

- What is the role of the HLT and VLT in finding the inverse of a function?
- What is the difference between $f(f^{-1}(y))$ and $f^{-1}(f(x))$?
- How does finding the inverse of a function relate to showing that it is surjective?