

Introduction to Proofs - Compositions

Prof Mike Pawliuk

UTM

July 23, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Evaluate if a composition of functions is defined.
- ② Prove general facts about compositions of functions, from definitions.

Motivation

Motivation

Here we will see how to deal with applying many functions, one after another.

We will also see how to take off your socks.

1. Example

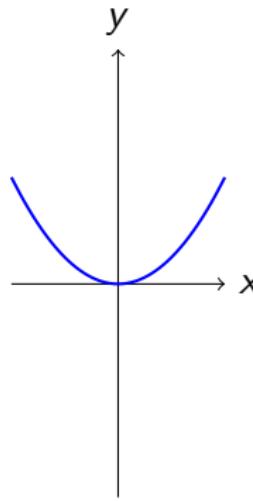
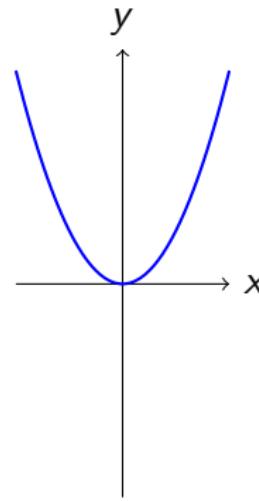
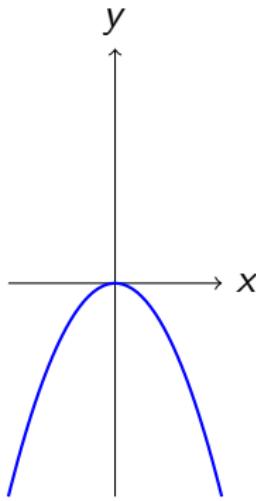
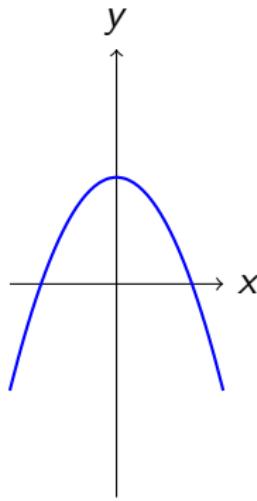
Exercise. Draw the following functions:

- ① x^2 [basic function]
- ② $3x^2$ [scale up by 3]
- ③ $-3x^2$ [reflect across x-axis]
- ④ $-3x^2 + 1$ [Shift up one]

1. Example

Exercise. Draw the following functions:

- ① x^2 [basic function]
- ② $3x^2$ [scale up by 3]
- ③ $-3x^2$ [reflect across x-axis]
- ④ $-3x^2 + 1$ [Shift up one]



1. Example

This function was composed of four simple functions:

$$a(x) = x^2$$

$$b(x) = 3x$$

$$c(x) = -x$$

$$d(x) = x + 1$$

1. Example

This function was composed of four simple functions:

$$a(x) = x^2$$

$$b(x) = 3x$$

$$c(x) = -x$$

$$d(x) = x + 1$$

We performed a , then b , then c , then d .

1. Example

This function was composed of four simple functions:

$$a(x) = x^2$$

$$b(x) = 3x$$

$$c(x) = -x$$

$$d(x) = x + 1$$

We performed a , then b , then c , then d .

$$-3x^2 + 1 = d(c(b(a(x))))$$

1. Example

This function was composed of four simple functions:

$$a(x) = x^2$$

$$b(x) = 3x$$

$$c(x) = -x$$

$$d(x) = x + 1$$

We performed a , then b , then c , then d .

$$-3x^2 + 1 = d(c(b(a(x))))$$

Exercise: Show that $a(b(x)) \neq b(a(x))$.

2. Definition

Definition

Let $f : A \rightarrow B$ and $g : C \rightarrow D$ be functions.

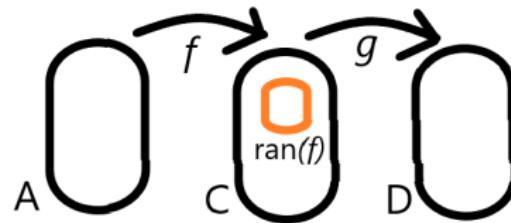
The composition of g with f , denoted $g \circ f : A \rightarrow D$ is defined by:
 $g \circ f(x) = g(f(x))$ for $x \in A$.

2. Definition

Definition

Let $f : A \rightarrow B$ and $g : C \rightarrow D$ be functions.

The composition of g with f , denoted $g \circ f : A \rightarrow D$ is defined by:
 $g \circ f(x) = g(f(x))$ for $x \in A$.



Warning

In order for $g \circ f$ to be defined, we need $g(f(x))$ to always be defined. i.e.

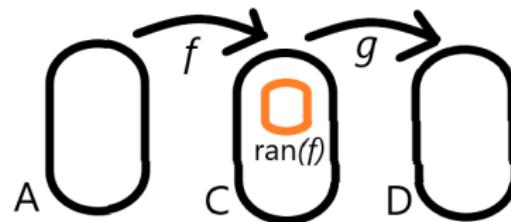
$$\text{ran}(f) \subseteq \text{dom}(g).$$

2. Definition

Definition

Let $f : A \rightarrow B$ and $g : C \rightarrow D$ be functions.

The composition of g with f , denoted $g \circ f : A \rightarrow D$ is defined by:
 $g \circ f(x) = g(f(x))$ for $x \in A$.



Warning

In order for $g \circ f$ to be defined, we need $g(f(x))$ to always be defined. i.e.

$$\text{ran}(f) \subseteq \text{dom}(g).$$

Usually we'll actually have $\text{codom}(f) \subseteq \text{dom}(g)$.

3. The order of compositions really matters

Example

Let $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}$ be defined by $f(n, m) = n - m$.

Let $g : \mathbb{Z} \rightarrow \mathbb{R}$ be defined by $g(x) = \sqrt{|x|}$.

3. The order of compositions really matters

Example

Let $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}$ be defined by $f(n, m) = n - m$.

Let $g : \mathbb{Z} \rightarrow \mathbb{R}$ be defined by $g(x) = \sqrt{|x|}$.

$$g \circ f = \sqrt{|n - m|}$$

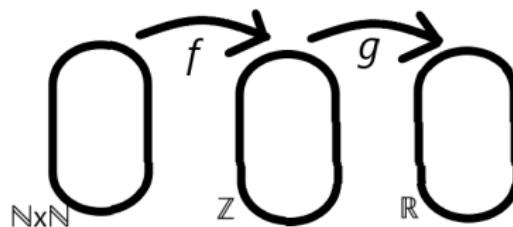
3. The order of compositions really matters

Example

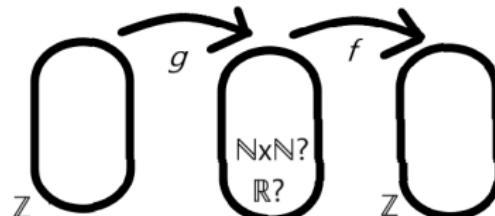
Let $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}$ be defined by $f(n, m) = n - m$.

Let $g : \mathbb{Z} \rightarrow \mathbb{R}$ be defined by $g(x) = \sqrt{|x|}$.

$$g \circ f = \sqrt{|n - m|}$$



$$f \circ g = ?$$



4. Functions and compositions

This is a fundamental result in math. Look for it in every math course.

Theorem

- ① The composition of any two injections is an injection.

4. Functions and compositions

This is a fundamental result in math. Look for it in every math course.

Theorem

- ① The composition of any two injections is an injection.
- ② The composition of any two surjections is a surjection.

4. Functions and compositions

This is a fundamental result in math. Look for it in every math course.

Theorem

- ① The composition of any two injections is an injection.
- ② The composition of any two surjections is a surjection.
- ③ The composition of any two bijections is a bijection.

4. Functions and compositions

This is a fundamental result in math. Look for it in every math course.

Theorem

- ① The composition of any two injections is an injection.
- ② The composition of any two surjections is a surjection.
- ③ The composition of any two bijections is a bijection.
- ④ Secret for now.

4. Functions and compositions

This is a fundamental result in math. Look for it in every math course.

Theorem

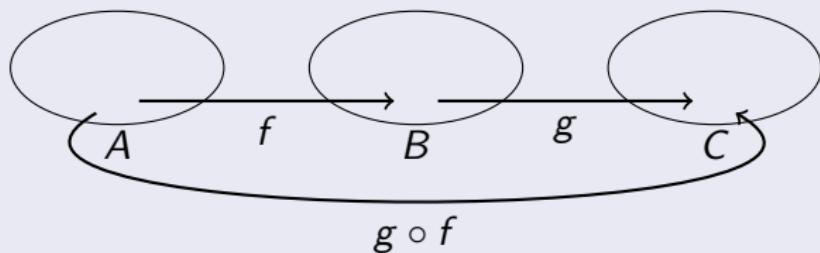
- ① The composition of any two injections is an injection.
- ② The composition of any two surjections is a surjection.
- ③ The composition of any two bijections is a bijection.
- ④ Secret for now.

Proof of 1 is an important exercise.

4. The composition of any two surjections is a surjection.

Proof.

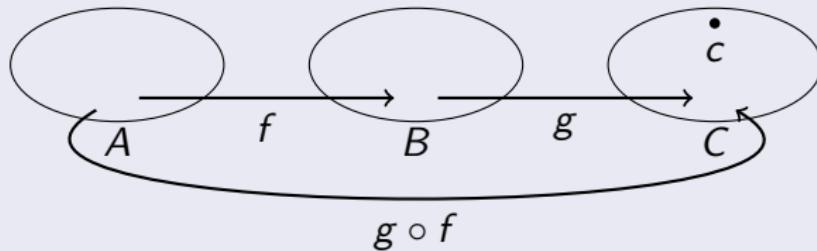
Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be surjections.



4. The composition of any two surjections is a surjection.

Proof.

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be surjections.

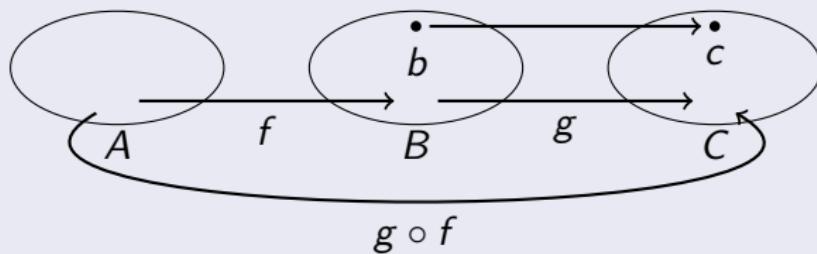


Let $c \in C$. Goal: Find an $a \in A$ with $g \circ f(a) = c$.

4. The composition of any two surjections is a surjection.

Proof.

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be surjections.



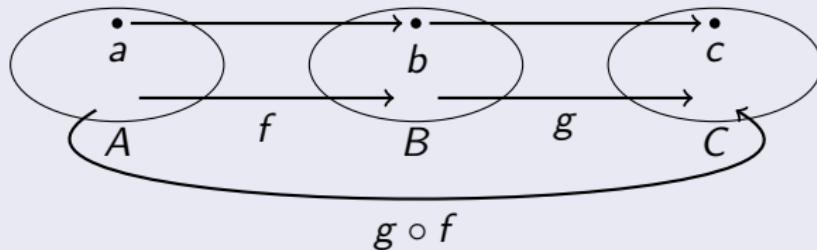
Let $c \in C$. Goal: Find an $a \in A$ with $g \circ f(a) = c$.

Because g is a surjection, there is a $b \in B$ with $g(b) = c$.

4. The composition of any two surjections is a surjection.

Proof.

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be surjections.



Let $c \in C$. Goal: Find an $a \in A$ with $g \circ f(a) = c$.

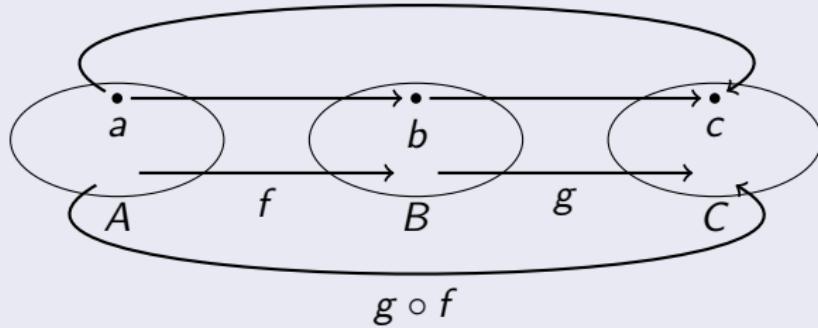
Because g is a surjection, there is a $b \in B$ with $g(b) = c$.

Because f is a surjection, there is an $a \in A$ with $f(a) = b$.

4. The composition of any two surjections is a surjection.

Proof.

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be surjections.



Let $c \in C$. Goal: Find an $a \in A$ with $g \circ f(a) = c$.

Because g is a surjection, there is a $b \in B$ with $g(b) = c$.

Because f is a surjection, there is an $a \in A$ with $f(a) = b$.

Note $g \circ f(a) = g(f(a)) = g(b) = c$.

4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

What is $(g \circ f)^{-1}$, i.e. the inverse of “get feet dressed”?

4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

What is $(g \circ f)^{-1}$, i.e. the inverse of “get feet dressed”?

Take off your shoes (g^{-1}) then take off your socks (f^{-1}).

4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

What is $(g \circ f)^{-1}$, i.e. the inverse of “get feet dressed”?

Take off your shoes (g^{-1}) then take off your socks (f^{-1}).

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

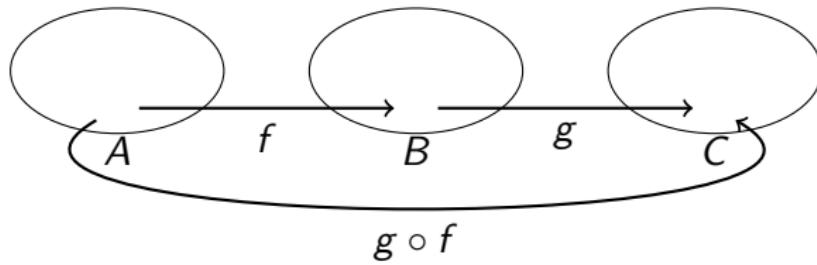
4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

What is $(g \circ f)^{-1}$, i.e. the inverse of “get feet dressed”?

Take off your shoes (g^{-1}) then take off your socks (f^{-1}).

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$



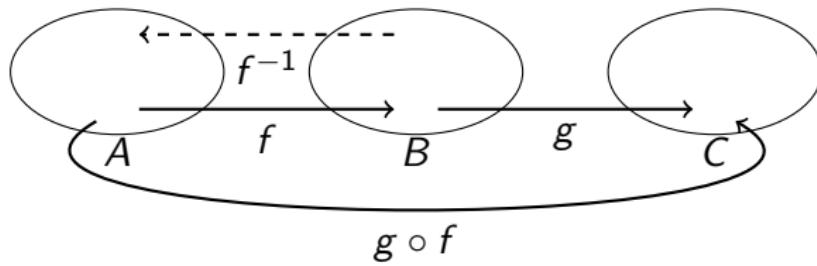
4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

What is $(g \circ f)^{-1}$, i.e. the inverse of “get feet dressed”?

Take off your shoes (g^{-1}) then take off your socks (f^{-1}).

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$



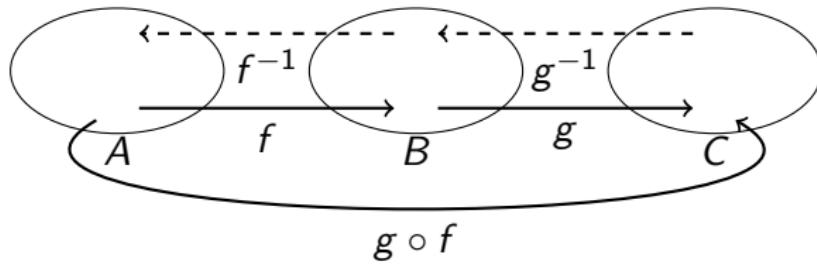
4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

What is $(g \circ f)^{-1}$, i.e. the inverse of “get feet dressed”?

Take off your shoes (g^{-1}) then take off your socks (f^{-1}).

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$



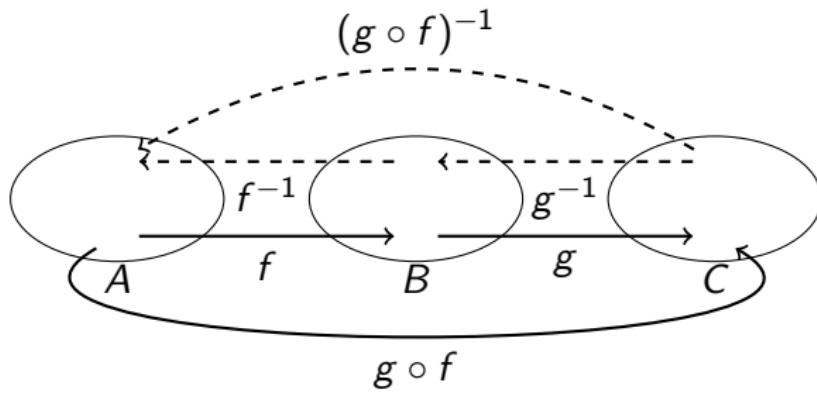
4. Secret theorem (Socks and Shoes)

- f : “put on your socks”
- g : “put on your shoes”
- $g \circ f$: “get feet dressed”

What is $(g \circ f)^{-1}$, i.e. the inverse of “get feet dressed”?

Take off your shoes (g^{-1}) then take off your socks (f^{-1}).

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$



4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

Let $g^{-1}(c) = b$. (So $g(b) = c$.)

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

Let $g^{-1}(c) = b$. (So $g(b) = c$.)

Let $f^{-1}(b) = a$. (So $f(a) = b$.)

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

Let $g^{-1}(c) = b$. (So $g(b) = c$.)

Let $f^{-1}(b) = a$. (So $f(a) = b$.)

Note 1. $g \circ f(a) = c$, so $(g \circ f)^{-1}(c)$

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

Let $g^{-1}(c) = b$. (So $g(b) = c$.)

Let $f^{-1}(b) = a$. (So $f(a) = b$.)

Note 1. $g \circ f(a) = c$, so $(g \circ f)^{-1}(c) = a$.

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

Let $g^{-1}(c) = b$. (So $g(b) = c$.)

Let $f^{-1}(b) = a$. (So $f(a) = b$.)

Note 1. $g \circ f(a) = c$, so $(g \circ f)^{-1}(c) = a$.

Note 2. $f^{-1} \circ g^{-1}(c) =$

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

Let $g^{-1}(c) = b$. (So $g(b) = c$.)

Let $f^{-1}(b) = a$. (So $f(a) = b$.)

Note 1. $g \circ f(a) = c$, so $(g \circ f)^{-1}(c) = a$.

Note 2. $f^{-1} \circ g^{-1}(c) = f^{-1}(b) =$

4. Secret Theorem (Socks and Shoes)

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Show $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$ for all $c \in C$.

Idea: Compute $g \circ f(.) = c$, so $(.) = (g \circ f)^{-1}(c)$.

Let $c \in C$.

Let $g^{-1}(c) = b$. (So $g(b) = c$.)

Let $f^{-1}(b) = a$. (So $f(a) = b$.)

Note 1. $g \circ f(a) = c$, so $(g \circ f)^{-1}(c) = a$.

Note 2. $f^{-1} \circ g^{-1}(c) = f^{-1}(b) = a$.

So $(g \circ f)^{-1}(c) = f^{-1} \circ g^{-1}(c)$.

Reflection

- Does the order in which you compose functions matter?
- For $g \circ f$, why do we need $\text{ran}(f) \subseteq \text{dom}(g)$?
- How do socks and shoes relate to inverse functions?