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Learning Objectives (for this video)

By the end of this video, participants should be able to:

1 Define relative cardinality

2 State and prove basic abstract results about cardinality.
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1. Motivation

Example 1

Do you have more fingers on your left hand or right hand?

Example 2

Are there more people or chairs in this picture?

This image is used with permission from Pixabay.
https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/
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1. Motivation

Example 2

Are there more people or chairs in this picture?

This image is used with permission from Pixabay.
https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/

Conclusion

We have an assignment of each person to a different chair, and there are
chairs left over. So there are more chairs than people.

Prof Mike Pawliuk (UTM) Intro to Proofs July 30, 2020 4 / 13

https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/


1. Motivation

Example 2

Are there more people or chairs in this picture?

This image is used with permission from Pixabay.
https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/

Conclusion

We have an assignment of each person to a different chair, and there are
chairs left over. So there are more chairs than people.

Prof Mike Pawliuk (UTM) Intro to Proofs July 30, 2020 4 / 13

https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/


1. Motivation

Observations
1 We don’t need numbers to do this.

2 We can measure relative quantities using the language of functions
(injections, surjections, bijections).
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1. Motivation

Example 2

What type of function is the assignment of people to chairs? (Domain,
codomain, injective, surjective, bijective?)

This image is used with permission from Pixabay.
https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/

Conclusion

It is a function f : {people in picture} → {chairs in picture} that is an
injection (but not a surjection).
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2. Definitions

Definitions

Let A and B be two sets. We define

1 |A| ≤ |B| iff

there is an injection f : A→ B.

2 |A| = |B| iff

there is a bijection f : A→ B.

We call |A| the cardinality of A.

Informally:

|A| is the “number of elements in A”. It has nothing to do
with absolute values.
We will not use this as our definition.
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3. Simple properties

Lemma

Let A,B,C be sets. Assume |A| ≤ |B| and |B| ≤ |C |. Then

|A| ≤ |C |.

Proof.

Assume |A| ≤ |B| and |B| ≤ |C |. So there are injections f : A→ B and
g : B → C .
Now g ◦ f : A→ C is an injection from A to C (by a lemma from section
on compositions).
So |A| ≤ |C |.

Note. This property is like transitivity for relative cardinalities.
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3. Other properties

Lemma

1 For all sets A, |A| ≤ |A|.
2 For all sets A, |A| = |A|.
3 For all sets A,B, if |A| = |B|, then |B| = |A|.
4 For all sets A,B,C , if |A| = |B| and |B| = |C |, then |A| = |C |.
5 For all sets A,B, if |A| = |B|, then |A| ≤ |B|.

Exercise: Prove all of these using the definitions.
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4. Cantor-Schroeder-Bernstein

Cantor-Schroeder-Bernstein Theorem

Let A,B be sets.
If |A| ≤ |B| and |B| ≤ |A|, then

|A| = |B|.

Note

This is not a trivial fact! It requires a lot of work to show.

Exercise

1 Construct an injection f : (−2, 2)→ [−2, 2].

f (x) = x

2 Construct an injection g : [−2, 2]→ (−2, 2).

f (x) = x/2

3 Construct a bijection h : (−2, 2)→ [−2, 2].

????
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4. Cantor-Schroeder-Bernstein

Useful Lemma

If A ⊆ B, then |A| ≤ |B|.

Proof.

Let A ⊆ B. Then f : A→ B defined by f (x) = x is a desired injection.

Question: Is the converse true?
No! For example, |{1, 2}| ≤ |{4, 5, 6}|, but {1, 2} 6⊆ {4, 5, 6}.
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4. Cantor-Schroeder-Bernstein

Finite CSB

Let A,B be finite sets. The following are equivalent:

1 |A| ≤ |B| and |B| ≤ |A|.
2 |A| = |B|

Exercise. This proof is much easier than the general CSB. (Where did you
use finiteness?)
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Reflection

What is the definition of |A| ≤ |B|?
What are the sets A where |A| = |∅|?
What is the role of surjections in determining relative cardinality?
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