

# Introduction to Proofs - Cardinality - Definitions

Prof Mike Pawliuk

UTM

July 30, 2020

Slides available at: [mikepawliuk.ca](http://mikepawliuk.ca)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.



# Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Define relative cardinality
- ② State and prove basic abstract results about cardinality.

# 1. Motivation

## Example 1

Do you have more fingers on your left hand or right hand?

# 1. Motivation

## Example 1

Do you have more fingers on your left hand or right hand?

## Example 2

Are there more people or chairs in this picture?



This image is used with permission from Pixabay.

<https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/>

# 1. Motivation

## Example 2

Are there more people or chairs in this picture?



This image is used with permission from Pixabay.  
<https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/>

# 1. Motivation

## Example 2

Are there more people or chairs in this picture?



This image is used with permission from Pixabay.  
<https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/>

## Conclusion

We have an assignment of each person to a different chair, and there are chairs left over. So there are more chairs than people.

# 1. Motivation

## Observations

- ① We don't need numbers to do this.
- ② We can measure relative quantities using the language of functions (injections, surjections, bijections).

# 1. Motivation

## Example 2

What type of function is the assignment of people to chairs? (Domain, codomain, injective, surjective, bijective?)



This image is used with permission from Pixabay.  
<https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/>

# 1. Motivation

## Example 2

What type of function is the assignment of people to chairs? (Domain, codomain, injective, surjective, bijective?)



This image is used with permission from Pixabay.  
<https://pixabay.com/photos/meetings-coffee-shop-people-cafe-1149198/>

## Conclusion

It is a function  $f : \{\text{people in picture}\} \rightarrow \{\text{chairs in picture}\}$  that is an injection (but not a surjection).

## 2. Definitions

### Definitions

Let  $A$  and  $B$  be two sets. We define

- ①  $|A| \leq |B|$  iff
- ②  $|A| = |B|$  iff

We call  $|A|$  the cardinality of  $A$ .

Informally:

## 2. Definitions

### Definitions

Let  $A$  and  $B$  be two sets. We define

- ①  $|A| \leq |B|$  iff there is an injection  $f : A \rightarrow B$ .
- ②  $|A| = |B|$  iff

We call  $|A|$  the cardinality of  $A$ .

Informally:

## 2. Definitions

### Definitions

Let  $A$  and  $B$  be two sets. We define

- ①  $|A| \leq |B|$  iff there is an injection  $f : A \rightarrow B$ .
- ②  $|A| = |B|$  iff there is a bijection  $f : A \rightarrow B$ .

We call  $|A|$  the cardinality of  $A$ .

Informally:

## 2. Definitions

### Definitions

Let  $A$  and  $B$  be two sets. We define

- ①  $|A| \leq |B|$  iff there is an injection  $f : A \rightarrow B$ .
- ②  $|A| = |B|$  iff there is a bijection  $f : A \rightarrow B$ .

We call  $|A|$  the cardinality of  $A$ .

Informally:  $|A|$  is the “number of elements in  $A$ ”. It has nothing to do with absolute values.

We will not use this as our definition.

### 3. Simple properties

#### Lemma

Let  $A, B, C$  be sets. Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . Then

### 3. Simple properties

#### Lemma

Let  $A, B, C$  be sets. Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . Then  $|A| \leq |C|$ .

#### Proof.

Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . So

### 3. Simple properties

#### Lemma

Let  $A, B, C$  be sets. Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . Then  $|A| \leq |C|$ .

#### Proof.

Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . So there are injections  $f : A \rightarrow B$  and  $g : B \rightarrow C$ .

### 3. Simple properties

#### Lemma

Let  $A, B, C$  be sets. Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . Then  $|A| \leq |C|$ .

#### Proof.

Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . So there are injections  $f : A \rightarrow B$  and  $g : B \rightarrow C$ .

Now  $g \circ f : A \rightarrow C$  is an injection from  $A$  to  $C$  (by a lemma from section on compositions).

### 3. Simple properties

#### Lemma

Let  $A, B, C$  be sets. Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . Then  $|A| \leq |C|$ .

#### Proof.

Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . So there are injections  $f : A \rightarrow B$  and  $g : B \rightarrow C$ .

Now  $g \circ f : A \rightarrow C$  is an injection from  $A$  to  $C$  (by a lemma from section on compositions).

So  $|A| \leq |C|$ . □

### 3. Simple properties

#### Lemma

Let  $A, B, C$  be sets. Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . Then  $|A| \leq |C|$ .

#### Proof.

Assume  $|A| \leq |B|$  and  $|B| \leq |C|$ . So there are injections  $f : A \rightarrow B$  and  $g : B \rightarrow C$ .

Now  $g \circ f : A \rightarrow C$  is an injection from  $A$  to  $C$  (by a lemma from section on compositions).

So  $|A| \leq |C|$ . □

Note. This property is like transitivity for relative cardinalities.

### 3. Other properties

#### Lemma

### 3. Other properties

#### Lemma

- ① For all sets  $A$ ,  $|A| \leq |A|$ .
- ② For all sets  $A$ ,  $|A| = |A|$ .
- ③ For all sets  $A, B$ , if  $|A| = |B|$ , then  $|B| = |A|$ .
- ④ For all sets  $A, B, C$ , if  $|A| = |B|$  and  $|B| = |C|$ , then  $|A| = |C|$ .
- ⑤ For all sets  $A, B$ , if  $|A| = |B|$ , then  $|A| \leq |B|$ .

**Exercise:** Prove all of these using the definitions.

## 4. Cantor-Schroeder-Bernstein

### Cantor-Schroeder-Bernstein Theorem

Let  $A, B$  be sets.

If  $|A| \leq |B|$  and  $|B| \leq |A|$ , then

## 4. Cantor-Schroeder-Bernstein

### Cantor-Schroeder-Bernstein Theorem

Let  $A, B$  be sets.

If  $|A| \leq |B|$  and  $|B| \leq |A|$ , then  $|A| = |B|$ .

## 4. Cantor-Schroeder-Bernstein

### Cantor-Schroeder-Bernstein Theorem

Let  $A, B$  be sets.

If  $|A| \leq |B|$  and  $|B| \leq |A|$ , then  $|A| = |B|$ .

### Note

This is not a trivial fact! It requires a lot of work to show.

## 4. Cantor-Schroeder-Bernstein

### Cantor-Schroeder-Bernstein Theorem

Let  $A, B$  be sets.

If  $|A| \leq |B|$  and  $|B| \leq |A|$ , then  $|A| = |B|$ .

### Note

This is not a trivial fact! It requires a lot of work to show.

### Exercise

- ① Construct an injection  $f : (-2, 2) \rightarrow [-2, 2]$ .
- ② Construct an injection  $g : [-2, 2] \rightarrow (-2, 2)$ .
- ③ Construct a bijection  $h : (-2, 2) \rightarrow [-2, 2]$ .

## 4. Cantor-Schroeder-Bernstein

### Cantor-Schroeder-Bernstein Theorem

Let  $A, B$  be sets.

If  $|A| \leq |B|$  and  $|B| \leq |A|$ , then  $|A| = |B|$ .

### Note

This is not a trivial fact! It requires a lot of work to show.

### Exercise

- ① Construct an injection  $f : (-2, 2) \rightarrow [-2, 2]$ .  $f(x) = x$
- ② Construct an injection  $g : [-2, 2] \rightarrow (-2, 2)$ .
- ③ Construct a bijection  $h : (-2, 2) \rightarrow [-2, 2]$ .

## 4. Cantor-Schroeder-Bernstein

### Cantor-Schroeder-Bernstein Theorem

Let  $A, B$  be sets.

If  $|A| \leq |B|$  and  $|B| \leq |A|$ , then  $|A| = |B|$ .

### Note

This is not a trivial fact! It requires a lot of work to show.

### Exercise

- ① Construct an injection  $f : (-2, 2) \rightarrow [-2, 2]$ .  $f(x) = x$
- ② Construct an injection  $g : [-2, 2] \rightarrow (-2, 2)$ .  $f(x) = x/2$
- ③ Construct a bijection  $h : (-2, 2) \rightarrow [-2, 2]$ .

## 4. Cantor-Schroeder-Bernstein

### Cantor-Schroeder-Bernstein Theorem

Let  $A, B$  be sets.

If  $|A| \leq |B|$  and  $|B| \leq |A|$ , then  $|A| = |B|$ .

### Note

This is not a trivial fact! It requires a lot of work to show.

### Exercise

- ① Construct an injection  $f : (-2, 2) \rightarrow [-2, 2]$ .  $f(x) = x$
- ② Construct an injection  $g : [-2, 2] \rightarrow (-2, 2)$ .  $f(x) = x/2$
- ③ Construct a bijection  $h : (-2, 2) \rightarrow [-2, 2]$ . ????

## 4. Cantor-Schroeder-Bernstein

### Useful Lemma

If  $A \subseteq B$ , then  $|A| \leq |B|$ .

## 4. Cantor-Schroeder-Bernstein

### Useful Lemma

If  $A \subseteq B$ , then  $|A| \leq |B|$ .

### Proof.

Let  $A \subseteq B$ . Then  $f : A \rightarrow B$  defined by  $f(x) = x$  is a desired injection. □

## 4. Cantor-Schroeder-Bernstein

### Useful Lemma

If  $A \subseteq B$ , then  $|A| \leq |B|$ .

### Proof.

Let  $A \subseteq B$ . Then  $f : A \rightarrow B$  defined by  $f(x) = x$  is a desired injection. □

Question: Is the converse true?

## 4. Cantor-Schroeder-Bernstein

### Useful Lemma

If  $A \subseteq B$ , then  $|A| \leq |B|$ .

### Proof.

Let  $A \subseteq B$ . Then  $f : A \rightarrow B$  defined by  $f(x) = x$  is a desired injection. □

Question: Is the converse true?

No! For example,  $|\{1, 2\}| \leq |\{4, 5, 6\}|$ , but  $\{1, 2\} \not\subseteq \{4, 5, 6\}$ .

## 4. Cantor-Schroeder-Bernstein

### Finite CSB

Let  $A, B$  be finite sets. The following are equivalent:

- ①  $|A| \leq |B|$  and  $|B| \leq |A|$ .
- ②  $|A| = |B|$

## 4. Cantor-Schroeder-Bernstein

### Finite CSB

Let  $A, B$  be finite sets. The following are equivalent:

- ①  $|A| \leq |B|$  and  $|B| \leq |A|$ .
- ②  $|A| = |B|$

Exercise. This proof is much easier than the general CSB. (Where did you use finiteness?)

# Reflection

- What is the definition of  $|A| \leq |B|$ ?
- What are the sets  $A$  where  $|A| = |\emptyset|$ ?
- What is the role of surjections in determining relative cardinality?