

Introduction to Proofs - Cardinality - Examples

Prof Mike Pawliuk

UTM

July 30, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Determine the relative cardinality of two sets.
- ② Prove that all intervals have the same cardinality.

1. Motivation

Motivation

Now that we know the definitions of relative cardinality, how do we actually compare cardinalities of actual sets?

2. Examples

Example 1

Let $E = \{2, 4, 6, 8, \dots\}$. Show that $|\mathbb{N}| = |E|$.

2. Examples

Example 1

Let $E = \{2, 4, 6, 8, \dots\}$. Show that $|\mathbb{N}| = |E|$.

Proof.

Let $f : \mathbb{N} \rightarrow E$ be defined by

2. Examples

Example 1

Let $E = \{2, 4, 6, 8, \dots\}$. Show that $|\mathbb{N}| = |E|$.

Proof.

Let $f : \mathbb{N} \rightarrow E$ be defined by $f(n) = 2n$.

This is clearly a bijection. (Exercise?)

2. Examples

Example 2

Let $A = \{1, 2, 3, \dots, 2020\}$. Show that $|A| \leq |\mathbb{R}|$ and that $|A| \neq |\mathbb{R}|$.

2. Examples

Example 2

Let $A = \{1, 2, 3, \dots, 2020\}$. Show that $|A| \leq |\mathbb{R}|$ and that $|A| \neq |\mathbb{R}|$.

Proof.

Since $\{1, 2, 3, \dots, 2020\} \subseteq \mathbb{R}$ we automatically get $|A| \leq |\mathbb{R}|$.

2. Examples

Example 2

Let $A = \{1, 2, 3, \dots, 2020\}$. Show that $|A| \leq |\mathbb{R}|$ and that $|A| \neq |\mathbb{R}|$.

Proof.

Since $\{1, 2, 3, \dots, 2020\} \subseteq \mathbb{R}$ we automatically get $|A| \leq |\mathbb{R}|$.

Now let $f : A \rightarrow \mathbb{R}$ be a function. We will show that f is not a surjection,

2. Examples

Example 2

Let $A = \{1, 2, 3, \dots, 2020\}$. Show that $|A| \leq |\mathbb{R}|$ and that $|A| \neq |\mathbb{R}|$.

Proof.

Since $\{1, 2, 3, \dots, 2020\} \subseteq \mathbb{R}$ we automatically get $|A| \leq |\mathbb{R}|$.

Now let $f : A \rightarrow \mathbb{R}$ be a function. We will show that f is not a surjection, by finding a $y \in \mathbb{R}$ that is not in the range of f .

2. Examples

Example 2

Let $A = \{1, 2, 3, \dots, 2020\}$. Show that $|A| \leq |\mathbb{R}|$ and that $|A| \neq |\mathbb{R}|$.

Proof.

Since $\{1, 2, 3, \dots, 2020\} \subseteq \mathbb{R}$ we automatically get $|A| \leq |\mathbb{R}|$.

Now let $f : A \rightarrow \mathbb{R}$ be a function. We will show that f is not a surjection, by finding a $y \in \mathbb{R}$ that is not in the range of f .

Let $y = \max(\{f(1), f(2), \dots, f(2020)\}) + 1$.

2. Examples

Example 2

Let $A = \{1, 2, 3, \dots, 2020\}$. Show that $|A| \leq |\mathbb{R}|$ and that $|A| \neq |\mathbb{R}|$.

Proof.

Since $\{1, 2, 3, \dots, 2020\} \subseteq \mathbb{R}$ we automatically get $|A| \leq |\mathbb{R}|$.

Now let $f : A \rightarrow \mathbb{R}$ be a function. We will show that f is not a surjection, by finding a $y \in \mathbb{R}$ that is not in the range of f .

Let $y = \max(\{f(1), f(2), \dots, f(2020)\}) + 1$. Note that $y > f(x)$ for all $1 \leq x \leq 2020$.

2. Examples

Example 2

Let $A = \{1, 2, 3, \dots, 2020\}$. Show that $|A| \leq |\mathbb{R}|$ and that $|A| \neq |\mathbb{R}|$.

Proof.

Since $\{1, 2, 3, \dots, 2020\} \subseteq \mathbb{R}$ we automatically get $|A| \leq |\mathbb{R}|$.

Now let $f : A \rightarrow \mathbb{R}$ be a function. We will show that f is not a surjection, by finding a $y \in \mathbb{R}$ that is not in the range of f .

Let $y = \max(\{f(1), f(2), \dots, f(2020)\}) + 1$. Note that $y > f(x)$ for all $1 \leq x \leq 2020$. So $y \notin \text{range}(f)$. □

3. Intervals

Goal

Let $a < b$ and $c < d$ be real numbers. Then $|(a, b)| = |(c, d)|$.

Exercises.

- ① Show $|(0, 1)| = |(1, 2)|$.
- ② Show $|(0, 1)| = |(0, 2)|$.
- ③ Show $|(0, 1)| = |(1, 3)|$.
- ④ Show $|(0, 1)| = |(a, b)|$.
- ⑤ Conclude $|(a, b)| = |(c, d)|$.

3. Intervals

Goal

Let $a < b$ and $c < d$ be real numbers. Then $|[a, b]| = |[c, d]|$.

Exercises.

- ① Show $|[0, 1]| = |[1, 2]|$. $f(x) = x + 1$
- ② Show $|[0, 1]| = |[0, 2]|$.
- ③ Show $|[0, 1]| = |[1, 3]|$.
- ④ Show $|[0, 1]| = |[a, b]|$.
- ⑤ Conclude $|[a, b]| = |[c, d]|$.

3. Intervals

Goal

Let $a < b$ and $c < d$ be real numbers. Then $|(a, b)| = |(c, d)|$.

Exercises.

- ① Show $|(0, 1)| = |(1, 2)|$. $f(x) = x + 1$
- ② Show $|(0, 1)| = |(0, 2)|$. $f(x) = 2x$
- ③ Show $|(0, 1)| = |(1, 3)|$.
- ④ Show $|(0, 1)| = |(a, b)|$.
- ⑤ Conclude $|(a, b)| = |(c, d)|$.

3. Intervals

Goal

Let $a < b$ and $c < d$ be real numbers. Then $|(a, b)| = |(c, d)|$.

Exercises.

- ① Show $|(0, 1)| = |(1, 2)|$. $f(x) = x + 1$
- ② Show $|(0, 1)| = |(0, 2)|$. $f(x) = 2x$
- ③ Show $|(0, 1)| = |(1, 3)|$. $f(x) = 2x + 1$
- ④ Show $|(0, 1)| = |(a, b)|$.
- ⑤ Conclude $|(a, b)| = |(c, d)|$.

3. Intervals

Goal

Let $a < b$ and $c < d$ be real numbers. Then $|(a, b)| = |(c, d)|$.

Exercises.

- ① Show $|(0, 1)| = |(1, 2)|$. $f(x) = x + 1$
- ② Show $|(0, 1)| = |(0, 2)|$. $f(x) = 2x$
- ③ Show $|(0, 1)| = |(1, 3)|$. $f(x) = 2x + 1$
- ④ Show $|(0, 1)| = |(a, b)|$. $f(x) = (b - a)x + a$
- ⑤ Conclude $|(a, b)| = |(c, d)|$.

3. Intervals

Goal

Let $a < b$ and $c < d$ be real numbers. Then $|(a, b)| = |(c, d)|$.

Exercises.

- ① Show $|(0, 1)| = |(1, 2)|$. $f(x) = x + 1$
- ② Show $|(0, 1)| = |(0, 2)|$. $f(x) = 2x$
- ③ Show $|(0, 1)| = |(1, 3)|$. $f(x) = 2x + 1$
- ④ Show $|(0, 1)| = |(a, b)|$. $f(x) = (b - a)x + a$
- ⑤ Conclude $|(a, b)| = |(c, d)|$. Since $|(c, d)| = |(0, 1)|$.

3. Intervals

Goal

Let $a < b$ and $c < d$ be real numbers. Then $|(a, b)| = |(c, d)|$.

Exercises.

- ① Show $|(0, 1)| = |(1, 2)|$. $f(x) = x + 1$
- ② Show $|(0, 1)| = |(0, 2)|$. $f(x) = 2x$
- ③ Show $|(0, 1)| = |(1, 3)|$. $f(x) = 2x + 1$
- ④ Show $|(0, 1)| = |(a, b)|$. $f(x) = (b - a)x + a$
- ⑤ Conclude $|(a, b)| = |(c, d)|$. Since $|(c, d)| = |(0, 1)|$.

Corollary: $|(a, b)| = |(c, d)|$.

3. Intervals

Theorem

$$|\mathbb{R}| = |(-\pi/2, \pi/2)|.$$

3. Intervals

Theorem

$$|\mathbb{R}| = |(-\pi/2, \pi/2)|.$$

Proof.

Note $\arctan : \mathbb{R} \rightarrow (-\pi/2, \pi/2)$ is a bijection.

3. Intervals

Theorem

$$|\mathbb{R}| = |(-\pi/2, \pi/2)|.$$

Proof.

Note $\arctan : \mathbb{R} \rightarrow (-\pi/2, \pi/2)$ is a bijection. □

Exercise. Show that the following have the same cardinalities. Assume $a < b$.

- ① \mathbb{R}
- ② (a, b)
- ③ $[a, b]$
- ④ (a, ∞)
- ⑤ $[a, \infty)$
- ⑥ $(-\infty, b)$
- ⑦ $(-\infty, b]$

Reflection

- If two intervals have the same cardinality, do they have to have the same length?
- Wait. We showed that the evens and the natural numbers have the same cardinality. Shouldn't it be $|E| < |\mathbb{N}|$ since the evens are a subset of \mathbb{N} ?