

Introduction to Proofs - Countability - Intro

Prof Mike Pawliuk

UTM

July 30, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① State the definition of countable.
- ② Use Cantor-Schroeder-Bernstein to show that some sets are countable.

1. Motivation

Motivation

One special case of infinite cardinality is when a set has the same cardinality as \mathbb{N} . We think of \mathbb{N} as being a “small” infinite set. Our goal is to find other sets that have the same cardinality as \mathbb{N} .

2. Hilbert's Hotel

Hilbert's Hotel 1

The mathematician Hilbert has a fantastic hotel with one room for every natural number.

A farmer arrives at the hotel, and are sad to see that every room in the hotel is full! However, Hilbert, by rearranging his guests, finds a way so that every old guest has a room, and the farmer also has a room.

How does he do this?

2. Hilbert's Hotel

Hilbert's Hotel 1

The mathematician Hilbert has a fantastic hotel with one room for every natural number.

A farmer arrives at the hotel, and are sad to see that every room in the hotel is full! However, Hilbert, by rearranging his guests, finds a way so that every old guest has a room, and the farmer also has a room.

How does he do this?

One answer: Hilbert asks every current guest to move into the room one up (i.e. guests in room n go to room $n + 1$). Then he gives room 1 to the farmer.

2. Hilbert's Hotel

Hilbert's Hotel 2

Same situation, but this time 2020 farmers all show up.

2. Hilbert's Hotel

Hilbert's Hotel 2

Same situation, but this time 2020 farmers all show up.

One answer: Hilbert asks every current guest to move into the room 2020 up (i.e. guests in room n go to room $n + 2020$). Then he gives rooms 1 through 2020 to the farmers.

2. Hilbert's Hotel

Hilbert's Hotel 3

The hotel is so lovely, that every current guest phones one friend and tells them they have to get a room at Hilbert's hotel.

How does Hilbert find a way to accommodate all these new friends?

2. Hilbert's Hotel

Hilbert's Hotel 3

The hotel is so lovely, that every current guest phones one friend and tells them they have to get a room at Hilbert's hotel.

How does Hilbert find a way to accommodate all these new friends?

One answer: Hilbert asks every current guest to move into the room that is double their current room (i.e. guests in room n go to room $2n$). Then each guest's friend can go in the room one above them ($2n + 1$).

2. Hilbert's Hotel

Hilbert's Hotel 4

One day, a (large) soccer team shows up to the hotel. Each player wears a jersey with a different real number on it. There is a π player and a $\sqrt{2}$ player and a $\frac{7}{2}$ player; all real numbers are represented.

Can Hilbert find a way to accommodate the whole team into his hotel?

2. Hilbert's Hotel

Hilbert's Hotel 4

One day, a (large) soccer team shows up to the hotel. Each player wears a jersey with a different real number on it. There is a π player and a $\sqrt{2}$ player and a $\frac{7}{2}$ player; all real numbers are represented.

Can Hilbert find a way to accommodate the whole team into his hotel?

Answer: We'll see this later!

2. Definition

Definition

A set A is countable, if there is a bijection $f : A \rightarrow \mathbb{N}$.

2. Definition

Definition

A set A is countable, if there is a bijection $f : A \rightarrow \mathbb{N}$.

Lemma

The following are equivalent:

- ① A is countable.
- ② There is a bijection $g : \mathbb{N} \rightarrow A$
- ③ A can be enumerated using \mathbb{N} in a list as a_1, a_2, a_3, \dots

2. Definition

Definition

A set A is countable, if there is a bijection $f : A \rightarrow \mathbb{N}$.

Lemma

The following are equivalent:

- ① A is countable.
- ② There is a bijection $g : \mathbb{N} \rightarrow A$
- ③ A can be enumerated using \mathbb{N} in a list as a_1, a_2, a_3, \dots

Note: If you have a bijection $g : \mathbb{N} \rightarrow A$, then one enumeration is $g(1), g(2), g(3), \dots$

3. Examples

Example 1

$\{2021, 2022, 2023, \dots\}$ is countable.

3. Examples

Example 1

$\{2021, 2022, 2023, \dots\}$ is countable.

Proof.

Let $g : \mathbb{N} \rightarrow \{2021, 2022, 2023, \dots\}$ be defined by $g(n) = n + 2020$. This is clearly a bijection. □

3. Examples

Example 1

$\{2021, 2022, 2023, \dots\}$ is countable.

Proof.

Let $g : \mathbb{N} \rightarrow \{2021, 2022, 2023, \dots\}$ be defined by $g(n) = n + 2020$. This is clearly a bijection. □

Example 2

$\{2, 4, 6, 8, \dots\}$ is countable.

3. Examples

Example 1

$\{2021, 2022, 2023, \dots\}$ is countable.

Proof.

Let $g : \mathbb{N} \rightarrow \{2021, 2022, 2023, \dots\}$ be defined by $g(n) = n + 2020$. This is clearly a bijection. □

Example 2

$\{2, 4, 6, 8, \dots\}$ is countable.

Proof.

Let $g : \mathbb{N} \rightarrow \{2, 4, 6, 8, \dots\}$ be defined by $g(n) = 2n$. This is clearly a bijection. □

3. Examples

Example 3

\mathbb{Z} is countable.

3. Examples

Example 3

\mathbb{Z} is countable.

Proof.

We can write this as a list:

$$0, 1, -1, 2, -2, 3, -3, 4, -4, \dots$$

And after thinking for a bit, this is given by the bijection $g : \mathbb{N} \rightarrow \mathbb{Z}$

$$g(x) =$$

3. Examples

Example 3

\mathbb{Z} is countable.

Proof.

We can write this as a list:

$$0, 1, -1, 2, -2, 3, -3, 4, -4, \dots$$

And after thinking for a bit, this is given by the bijection $g : \mathbb{N} \rightarrow \mathbb{Z}$

$$g(x) = \begin{cases} -(n-1)/2 & n \text{ is odd} \\ n/2 & n \text{ is even} \end{cases}$$

4. Other Examples

Other examples

The following sets are countable.

- ① \mathbb{N}
- ② \mathbb{Z}
- ③ \mathbb{Q}
- ④ $\mathbb{N} \times \mathbb{N}, \mathbb{Z} \times \mathbb{Z}$.
- ⑤ Every infinite subset of a countable set. (“Countable is the smallest size of infinity.”)

We'll prove these later.

5. Other results

Theorem

The following sets are countable.

- ① The collection of all finite strings of 0s and 1s is countable.
- ② If A, B are countable, $A \cup B$ is countable
- ③ If A, B are countable, then $A \times B$ is countable.
- ④ If A_n is countable for each $n \in \mathbb{N}$, then $A_1 \cup A_2 \cup A_3 \cup \dots$ is countable.

Challenge exercise. Prove these results.

Reflection

- Which of these gives an enumeration/listing of A : a bijection $f : A \rightarrow \mathbb{N}$ or $g : \mathbb{N} \rightarrow A$.
- Are there countably many prime numbers?
- Are there countably many powers of 10?