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Learning Objectives

By the end of this video, participants should be able to:
@ Define uncountability of a set.

@ Apply Cantor's Diagonalization to a list of real numbers (finite or
countable).
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1. Motivation

We have seen that N, Z, Q,N x N are all countable sets. Is every set either
finite or countable?

No. We will see that R is infinite and not countable. We will use a
non-trivial technique called “diagonalization”.
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Definition (Uncountable)

A set A is said to be uncountable if it is infinite and not countable.
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Definition (Uncountable)
A set A is said to be uncountable if it is infinite and not countable.

Idea. We think of:
o finite sets as extremely small,
@ countable sets as small and infinite,

@ uncountable sets as large and infinite.
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Proposition
If Ais countable, and B is uncountable, then |A| < |B].
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Proposition
If Ais countable, and B is uncountable, then |A| < |B].

Informal proof.

By definition, |A| # |B|, but why is |A| < |B|?
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Proposition
If Ais countable, and B is uncountable, then |A| < |B].
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Since A is countable, we can enumerate it as A = {a; : i € N}.
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2. Definition

Proposition
If Ais countable, and B is uncountable, then |A| < |B].

Informal proof.

By definition, |A| # |B|, but why is |A| < |B|?
Since A is countable, we can enumerate it as A = {a; : i € N}. Define an
injection f : A — B recursively by:

© f(a1) is any element of B.
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2. Definition

Proposition
If Ais countable, and B is uncountable, then |A| < |B].

Informal proof.

By definition, |A| # |B|, but why is |A| < |B|?
Since A is countable, we can enumerate it as A = {a; : i € N}. Define an
injection f : A — B recursively by:

© f(a1) is any element of B.
@ Choose f(az) to be any element of B\ {f(a1)}.
© Choose f(a3) to be any element of B\ {f(a1), f(a2)}.
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2. Definition

Proposition
If Ais countable, and B is uncountable, then |A| < |B].

Informal proof.

By definition, |A| # |B|, but why is |A| < |B|?
Since A is countable, we can enumerate it as A = {a; : i € N}. Define an
injection f : A — B recursively by:

© f(a1) is any element of B.

@ Choose f(az) to be any element of B\ {f(a1)}.

© Choose f(a3) to be any element of B\ {f(a1), f(a2)}.

o ...

© Choose f(ap+1) to be any element of B\ {f(a1), f(a2),...,f(an)}
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2. Definition

Proposition
If Ais countable, and B is uncountable, then |A| < |B].

Informal proof.

By definition, |A| # |B|, but why is |A| < |B|?
Since A is countable, we can enumerate it as A = {a; : i € N}. Define an
injection f : A — B recursively by:

© f(a1) is any element of B.

@ Choose f(az) to be any element of B\ {f(a1)}.

© Choose f(a3) to be any element of B\ {f(a1), f(a2)}.

o ...

© Choose f(ap+1) to be any element of B\ {f(a1), f(a2),...,f(an)}

Note that if i # j, then f(a;) # f(aj) by construction. So f is an injection.
L]

v
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3. Diagonalization

Suppose that x, y and z are all unknown real numbers between 0 and 1.
How can you find a new number a that is different from x, y, and z, and is
between 0 and 17
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3. Diagonalization

Suppose that x, y and z are all unknown real numbers between 0 and 1.

How can you find a new number a that is different from x, y, and z, and is
between 0 and 17

These methods don't work:

O [Take the sum.|
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Suppose that x, y and z are all unknown real numbers between 0 and 1.

How can you find a new number a that is different from x, y, and z, and is
between 0 and 17
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o Doesn’t work when x = 0.1,y = 0.5,z = 0.9, as the

sum is 1.5.
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Suppose that x, y and z are all unknown real numbers between 0 and 1.

How can you find a new number a that is different from x, y, and z, and is
between 0 and 17

These methods don't work:

o Doesn’t work when x = 0.1,y = 0.5,z = 0.9, as the

sum is 1.5.

Q ‘Take the average. ‘ Doesn't work when x = 0.1,y = 0.5,z =10.9, as
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3. Diagonalization

Suppose that x, y and z are all unknown real numbers between 0 and 1.
How can you find a new number a that is different from x, y, and z, and is
between 0 and 17

These methods don't work:

o Doesn’t work when x = 0.1,y = 0.5,z = 0.9, as the

sum is 1.5.

Q ‘Take the average. ‘ Doesn't work when x = 0.1,y = 0.5,z = 0.9, as
the average is 0.5 = y.

We will use a method called Cantor’s diagonalization.
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3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1,0.5,0.9:
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3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1,0.5,0.9:

x = 0[1]00
y =050
z=0.900]

a=0.217

@ a = x because the first digit of a is 2, and the first digit of x is 1.
@ a = y because the second digit of a is 1, and the first digit of y is 0.
@ a #* z because the third digit of a is 7, and the third digit of z is 0.
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3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1,0.5,0.9:

x = 0[1]00
y =050
z=0.900]

a=0.217

@ a = x because the first digit of a is 2, and the first digit of x is 1.
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3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:
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3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:
w = 0[0P1
x =0.0/1]0
y =0.530]

z=0.101
a=0.101

Reflection

@ How many digits do we need to diagonalize a list with 2020 numbers?

@ How many digits do we need to diagonalize a list with countably
many numbers?

o Will this process always give us a real number between 0 and 17

@ How can we formalize, or automate, the idea of choosing a different
digit?
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4. [0, 1] is uncountable

Theorem (Cantor)

[0, 1] is uncountable.
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4. [0, 1] is uncountable

Proof.

Clearly [0, 1] is infinite. Suppose that f : N — [0, 1] is a function. We will
show that it is not a surjection by constructing an a € [0, 1] that is not
equal to any f(n).
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f(l) = 0.12X13 000
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p(l)=p(2)=...=p(9) =0.
So a € [0,1] and a # f(n) for each n € N.
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Reflection

@ What does diagonalizing a list produce?
@ What is the role of the p function in Cantor’s diagonalization proof?
e How did we know that a # f(1) in Cantor’s diagonalization proof?

o Wait, there are different sizes of infinity?!
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