

Introduction to Proofs - Countability - Diagonalization

Prof Mike Pawliuk

UTM

August 4, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives

By the end of this video, participants should be able to:

- ① Define uncountability of a set.
- ② Apply Cantor's Diagonalization to a list of real numbers (finite or countable).

1. Motivation

Motivation

We have seen that $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}$ are all countable sets. Is every set either finite or countable?

No. We will see that \mathbb{R} is infinite and not countable. We will use a non-trivial technique called “diagonalization”.

2. Definition

Definition (Uncountable)

A set A is said to be uncountable if it is infinite and not countable.

2. Definition

Definition (Uncountable)

A set A is said to be uncountable if it is infinite and not countable.

Idea. We think of:

- finite sets as extremely small,
- countable sets as small and infinite,
- uncountable sets as large and infinite.

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

Informal proof.

By definition, $|A| \neq |B|$, but why is $|A| \leq |B|$?

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

Informal proof.

By definition, $|A| \neq |B|$, but why is $|A| \leq |B|$?

Since A is countable, we can enumerate it as $A = \{a_i : i \in \mathbb{N}\}$.

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

Informal proof.

By definition, $|A| \neq |B|$, but why is $|A| \leq |B|$?

Since A is countable, we can enumerate it as $A = \{a_i : i \in \mathbb{N}\}$. Define an injection $f : A \rightarrow B$ recursively by:

- ① $f(a_1)$ is any element of B .

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

Informal proof.

By definition, $|A| \neq |B|$, but why is $|A| \leq |B|$?

Since A is countable, we can enumerate it as $A = \{a_i : i \in \mathbb{N}\}$. Define an injection $f : A \rightarrow B$ recursively by:

- ① $f(a_1)$ is any element of B .
- ② Choose $f(a_2)$ to be any element of $B \setminus \{f(a_1)\}$.

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

Informal proof.

By definition, $|A| \neq |B|$, but why is $|A| \leq |B|$?

Since A is countable, we can enumerate it as $A = \{a_i : i \in \mathbb{N}\}$. Define an injection $f : A \rightarrow B$ recursively by:

- ① $f(a_1)$ is any element of B .
- ② Choose $f(a_2)$ to be any element of $B \setminus \{f(a_1)\}$.
- ③ Choose $f(a_3)$ to be any element of $B \setminus \{f(a_1), f(a_2)\}$.

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

Informal proof.

By definition, $|A| \neq |B|$, but why is $|A| \leq |B|$?

Since A is countable, we can enumerate it as $A = \{a_i : i \in \mathbb{N}\}$. Define an injection $f : A \rightarrow B$ recursively by:

- ① $f(a_1)$ is any element of B .
- ② Choose $f(a_2)$ to be any element of $B \setminus \{f(a_1)\}$.
- ③ Choose $f(a_3)$ to be any element of $B \setminus \{f(a_1), f(a_2)\}$.
- ④ ...
- ⑤ Choose $f(a_{n+1})$ to be any element of $B \setminus \{f(a_1), f(a_2), \dots, f(a_n)\}$.

2. Definition

Proposition

If A is countable, and B is uncountable, then $|A| < |B|$.

Informal proof.

By definition, $|A| \neq |B|$, but why is $|A| \leq |B|$?

Since A is countable, we can enumerate it as $A = \{a_i : i \in \mathbb{N}\}$. Define an injection $f : A \rightarrow B$ recursively by:

- ① $f(a_1)$ is any element of B .
- ② Choose $f(a_2)$ to be any element of $B \setminus \{f(a_1)\}$.
- ③ Choose $f(a_3)$ to be any element of $B \setminus \{f(a_1), f(a_2)\}$.
- ④ ...
- ⑤ Choose $f(a_{n+1})$ to be any element of $B \setminus \{f(a_1), f(a_2), \dots, f(a_n)\}$.

Note that if $i \neq j$, then $f(a_i) \neq f(a_j)$ by construction. So f is an injection.

3. Diagonalization

Motivation

Suppose that x , y and z are all unknown real numbers between 0 and 1. How can you find a new number a that is different from x , y , and z , and is between 0 and 1?

3. Diagonalization

Motivation

Suppose that x, y and z are all unknown real numbers between 0 and 1. How can you find a new number a that is different from x, y , and z , and is between 0 and 1?

These methods don't work:

- ① Take the sum.

3. Diagonalization

Motivation

Suppose that x, y and z are all unknown real numbers between 0 and 1. How can you find a new number a that is different from x, y , and z , and is between 0 and 1?

These methods don't work:

- ① Take the sum. Doesn't work when $x = 0.1, y = 0.5, z = 0.9$, as the sum is 1.5.

3. Diagonalization

Motivation

Suppose that x, y and z are all unknown real numbers between 0 and 1. How can you find a new number a that is different from x, y , and z , and is between 0 and 1?

These methods don't work:

- ① Take the sum. Doesn't work when $x = 0.1, y = 0.5, z = 0.9$, as the sum is 1.5.
- ② Take the average.

3. Diagonalization

Motivation

Suppose that x, y and z are all unknown real numbers between 0 and 1. How can you find a new number a that is different from x, y , and z , and is between 0 and 1?

These methods don't work:

- ① Take the sum. Doesn't work when $x = 0.1, y = 0.5, z = 0.9$, as the sum is 1.5.
- ② Take the average. Doesn't work when $x = 0.1, y = 0.5, z = 0.9$, as the average is $0.5 = y$.

3. Diagonalization

Motivation

Suppose that x, y and z are all unknown real numbers between 0 and 1. How can you find a new number a that is different from x, y , and z , and is between 0 and 1?

These methods don't work:

- ① Take the sum. Doesn't work when $x = 0.1, y = 0.5, z = 0.9$, as the sum is 1.5.
- ② Take the average. Doesn't work when $x = 0.1, y = 0.5, z = 0.9$, as the average is $0.5 = y$.

We will use a method called Cantor's diagonalization.

3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1, 0.5, 0.9:

3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1, 0.5, 0.9:

$$x = 0.\boxed{1}00$$

$$y = 0.5\boxed{0}0$$

$$z = 0.90\boxed{0}$$

3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1, 0.5, 0.9:

$$x = 0.\boxed{1}00$$

$$y = 0.5\boxed{0}0$$

$$z = 0.90\boxed{0}$$

$$a = 0.$$

3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1, 0.5, 0.9:

$$x = 0.\boxed{1}00$$

$$y = 0.5\boxed{0}0$$

$$z = 0.90\boxed{0}$$

$$a = 0.2$$

- $a \neq x$ because the first digit of a is 2, and the first digit of x is 1.

3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1, 0.5, 0.9:

$$x = 0.\boxed{1}00$$

$$y = 0.5\boxed{0}0$$

$$z = 0.90\boxed{0}$$

$$a = 0.21$$

- $a \neq x$ because the first digit of a is 2, and the first digit of x is 1.
- $a \neq y$ because the second digit of a is 1, and the first digit of y is 0.

3. Diagonalization

This is diagonalization for a list of 3 elements: 0.1, 0.5, 0.9:

$$x = 0.\boxed{1}00$$

$$y = 0.5\boxed{0}0$$

$$z = 0.90\boxed{0}$$

$$a = 0.217$$

- $a \neq x$ because the first digit of a is 2, and the first digit of x is 1.
- $a \neq y$ because the second digit of a is 1, and the first digit of y is 0.
- $a \neq z$ because the third digit of a is 7, and the third digit of z is 0.

3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:

3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:

$$w = 0.\boxed{0}21$$

$$x = 0.0\boxed{1}0$$

$$y = 0.53\boxed{0}$$

$$z = 0.101$$

3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:

$$w = 0.\boxed{0}21$$

$$x = 0.0\boxed{1}0$$

$$y = 0.53\boxed{0}$$

$$z = 0.101$$

$$a = 0.$$

3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:

$$w = 0.\boxed{0}21$$

$$x = 0.0\boxed{1}0$$

$$y = 0.53\boxed{0}$$

$$z = 0.101$$

$$a = 0.1$$

3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:

$$w = 0.\boxed{0}21$$

$$x = 0.0\boxed{1}0$$

$$y = 0.53\boxed{0}$$

$$z = 0.101$$

$$a = 0.10$$

3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:

$$w = 0.\boxed{0}21$$

$$x = 0.0\boxed{1}0$$

$$y = 0.53\boxed{0}$$

$$z = 0.101$$

$$a = 0.101$$

3. Diagonalization

You need 4 digits to diagonalize a list of 4 numbers:

$$w = 0.\boxed{0}21$$

$$x = 0.0\boxed{1}0$$

$$y = 0.53\boxed{0}$$

$$z = 0.101$$

$$a = 0.101$$

Reflection

- How many digits do we need to diagonalize a list with 2020 numbers?
- How many digits do we need to diagonalize a list with countably many numbers?
- Will this process always give us a real number between 0 and 1?
- How can we formalize, or automate, the idea of choosing a different digit?

4. $[0, 1]$ is uncountable

Theorem (Cantor)

$[0, 1]$ is uncountable.

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

$$f(1) = 0.x_{11}x_{12}x_{13}\dots$$

$$f(2) = 0.x_{21}x_{22}x_{23}\dots$$

$$f(3) = 0.x_{31}x_{32}x_{33}\dots$$

⋮

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

$$f(1) = 0.x_{11}x_{12}x_{13}\dots$$

$$f(2) = 0.x_{21}x_{22}x_{23}\dots$$

$$f(3) = 0.x_{31}x_{32}x_{33}\dots$$

⋮

$$a = 0.$$

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

$$f(1) = 0.x_{11}x_{12}x_{13}\dots$$

$$f(2) = 0.x_{21}x_{22}x_{23}\dots$$

$$f(3) = 0.x_{31}x_{32}x_{33}\dots$$

⋮

$$a = 0.p(x_{11})$$

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

$$f(1) = 0.x_{11}x_{12}x_{13}\dots$$

$$f(2) = 0.x_{21}x_{22}x_{23}\dots$$

$$f(3) = 0.x_{31}x_{32}x_{33}\dots$$

⋮

$$a = 0.p(x_{11})p(x_{22})$$

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

$$f(1) = 0.x_{11}x_{12}x_{13}\dots$$

$$f(2) = 0.x_{21}x_{22}x_{23}\dots$$

$$f(3) = 0.x_{31}x_{32}x_{33}\dots$$

⋮

$$a = 0.p(x_{11})p(x_{22})p(x_{33})\dots$$

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

$$f(1) = 0.x_{11}x_{12}x_{13}\dots$$

$$f(2) = 0.x_{21}x_{22}x_{23}\dots$$

$$f(3) = 0.x_{31}x_{32}x_{33}\dots$$

⋮

$$a = 0.p(x_{11})p(x_{22})p(x_{33})\dots$$

Here $p : \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow \{0, 1\}$ is defined by $p(0) = 1$, and $p(1) = p(2) = \dots = p(9) = 0$.

4. $[0, 1]$ is uncountable

Proof.

Clearly $[0, 1]$ is infinite. Suppose that $f : \mathbb{N} \rightarrow [0, 1]$ is a function. We will show that it is not a surjection by constructing an $a \in [0, 1]$ that is not equal to any $f(n)$.

$$f(1) = 0.x_{11}x_{12}x_{13}\dots$$

$$f(2) = 0.x_{21}x_{22}x_{23}\dots$$

$$f(3) = 0.x_{31}x_{32}x_{33}\dots$$

⋮

$$a = 0.p(x_{11})p(x_{22})p(x_{33})\dots$$

Here $p : \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow \{0, 1\}$ is defined by $p(0) = 1$, and $p(1) = p(2) = \dots = p(9) = 0$.

So $a \in [0, 1]$ and $a \neq f(n)$ for each $n \in \mathbb{N}$.

Reflection

- What does diagonalizing a list produce?
- What is the role of the p function in Cantor's diagonalization proof?
- How did we know that $a \neq f(1)$ in Cantor's diagonalization proof?
- Wait, there are different sizes of infinity?!