

Introduction to Proofs - This title is a lie

Prof Mike Pawliuk

UTM

August 6, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Read these learning objectives.
- ② State a deep mathematical result that relies on Russell's Paradox.
- ③ Not accomplish the third learning objective.

Motivation

This is the motivation for self-reference and Cantor's theorem. That proof, and this motivation, use self-reference.

Many other motivation blocks and theorems in math and computer science use self-reference.

1. Barber's paradox

https://en.wikipedia.org/wiki/Barber_paradox

Example 1 - Barber's paradox

In the town of Snrub, there is a male barber whose job is to shave every man who do not shave themselves, and only those people.

Does the barber shave himself?

1. Barber's paradox

https://en.wikipedia.org/wiki/Barber_paradox

Example 1 - Barber's paradox

In the town of Snrub, there is a male barber whose job is to shave every man who do not shave themselves, and only those people.

Does the barber shave himself?

- ① If no, then he is obligated to shave himself; that is his job.

1. Barber's paradox

https://en.wikipedia.org/wiki/Barber_paradox

Example 1 - Barber's paradox

In the town of Snrub, there is a male barber whose job is to shave every man who do not shave themselves, and only those people.

Does the barber shave himself?

- ① If no, then he is obligated to shave himself; that is his job.
- ② If yes, then he is breaking his commitment to shave only those people who don't shave themselves.

1. Barber's paradox

https://en.wikipedia.org/wiki/Barber_paradox

Example 1 - Barber's paradox

In the town of Snrub, there is a male barber whose job is to shave every man who do not shave themselves, and only those people.

Does the barber shave himself?

- ① If no, then he is obligated to shave himself; that is his job.
- ② If yes, then he is breaking his commitment to shave only those people who don't shave themselves.

This is a contradiction or paradox.

2. Self-referential words

https://en.wikipedia.org/wiki/Autological_word

Example 2 - Autological words

A word is autological if it describes itself. e.g. “noun” is a noun, “polysyllabic” (having more than one syllable) has more than one syllable.

2. Self-referential words

https://en.wikipedia.org/wiki/Autological_word

Example 2 - Autological words

A word is autological if it describes itself. e.g. “noun” is a noun, “polysyllabic” (having more than one syllable) has more than one syllable.

A word is heterological if it does not describe itself. e.g. “long” is not a long word, “monosyllabic” (having only one syllable) has more than one syllable.

2. Self-referential words

https://en.wikipedia.org/wiki/Autological_word

Example 2 - Autological words

A word is autological if it describes itself. e.g. “noun” is a noun, “polysyllabic” (having more than one syllable) has more than one syllable.

A word is heterological if it does not describe itself. e.g. “long” is not a long word, “monosyllabic” (having only one syllable) has more than one syllable.

Is “heterological” a heterological word?

2. Self-referential words

https://en.wikipedia.org/wiki/Autological_word

Example 2 - Autological words

A word is autological if it describes itself. e.g. “noun” is a noun, “polysyllabic” (having more than one syllable) has more than one syllable.

A word is heterological if it does not describe itself. e.g. “long” is not a long word, “monosyllabic” (having only one syllable) has more than one syllable.

Is “heterological” a heterological word?

- ① If no, then it describes itself, so it is heterological.

2. Self-referential words

https://en.wikipedia.org/wiki/Autological_word

Example 2 - Autological words

A word is autological if it describes itself. e.g. “noun” is a noun, “polysyllabic” (having more than one syllable) has more than one syllable.

A word is heterological if it does not describe itself. e.g. “long” is not a long word, “monosyllabic” (having only one syllable) has more than one syllable.

Is “heterological” a heterological word?

- ① If no, then it describes itself, so it is heterological.
- ② If yes, then by definition it does not describe itself.

2. Self-referential words

https://en.wikipedia.org/wiki/Autological_word

Example 2 - Autological words

A word is autological if it describes itself. e.g. “noun” is a noun, “polysyllabic” (having more than one syllable) has more than one syllable.

A word is heterological if it does not describe itself. e.g. “long” is not a long word, “monosyllabic” (having only one syllable) has more than one syllable.

Is “heterological” a heterological word?

- ① If no, then it describes itself, so it is heterological.
- ② If yes, then by definition it does not describe itself.

This is a contradiction or paradox.

3. Set of all sets

https://en.wikipedia.org/wiki/Russell%27s_paradox

Example 3 - Russell's Paradox

Let R be the collection of all sets that do not contain themselves as elements. In set-builder notation:

$$R = \{x : x \notin x\}$$

For example, $\{1, 2, 3\} \notin \{1, 2, 3\}$, so $\{1, 2, 3\} \in R$.

Is $R \in R$?

3. Set of all sets

https://en.wikipedia.org/wiki/Russell%27s_paradox

Example 3 - Russell's Paradox

Let R be the collection of all sets that do not contain themselves as elements. In set-builder notation:

$$R = \{x : x \notin x\}$$

For example, $\{1, 2, 3\} \notin \{1, 2, 3\}$, so $\{1, 2, 3\} \in R$.

Is $R \in R$?

- ① If no, then it satisfies the property of R , so $R \in R$.

3. Set of all sets

https://en.wikipedia.org/wiki/Russell%27s_paradox

Example 3 - Russell's Paradox

Let R be the collection of all sets that do not contain themselves as elements. In set-builder notation:

$$R = \{x : x \notin x\}$$

For example, $\{1, 2, 3\} \notin \{1, 2, 3\}$, so $\{1, 2, 3\} \in R$.

Is $R \in R$?

- ① **If no**, then it satisfies the property of R , so $R \in R$.
- ② **If yes**, then it satisfies the property of R , so $R \notin R$.

3. Set of all sets

https://en.wikipedia.org/wiki/Russell%27s_paradox

Example 3 - Russell's Paradox

Let R be the collection of all sets that do not contain themselves as elements. In set-builder notation:

$$R = \{x : x \notin x\}$$

For example, $\{1, 2, 3\} \notin \{1, 2, 3\}$, so $\{1, 2, 3\} \in R$.

Is $R \in R$?

- ① If no, then it satisfies the property of R , so $R \in R$.
- ② If yes, then it satisfies the property of R , so $R \notin R$.

This is a contradiction or paradox. (We conclude that there is no “set of all sets”.)

4. The halting problem

https://en.wikipedia.org/wiki/Halting_problem

Example 4 - Halting Problem

Is there a Python program that can detect whether any code will halt (eventually finish running) have an infinite loop?

5. Gödel shaves himself

https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems

Example 5 - Gödel's Incompleteness Theorem

Does every true statement in math have a proof?

5. Gödel shaves himself

https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems

Example 5 - Gödel's Incompleteness Theorem

Does every true statement in math have a proof?

Gödel: No, there are true statements that have no proof.

5. Gödel shaves himself

https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems

Example 5 - Gödel's Incompleteness Theorem

Does every true statement in math have a proof?

Gödel: No, there are true statements that have no proof.

Further reading

- “Gödel-Escher-Bach: an eternal golden braid” by Douglas Hofstadter. (1979)
- “Gödel’s Proof” by Ernest Nagel and James R. Newman. (1958)
- “Logicomix: An Epic Search for Truth” by Apostolos Doxiadis and Christos Papadimitriou (2008).

Reflection

- In what ways are the self-reference examples similar?
- Make your own self-reference paradox.
- Don't reflect on this point; there is nothing to learn here.