

Introduction to Proofs - Cantor's Theorem

Prof Mike Pawliuk

UTM

August 6, 2020

Slides available at: mikepawliuk.ca

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Canada License.

Learning Objectives (for this video)

By the end of this video, participants should be able to:

- ① Construct functions between sets and power sets, and compute subsets from definitions relating to those functions.
- ② Construct arbitrarily large (in cardinality) sets.

Motivation

Motivation

Power sets can be used to create larger and larger infinite sets; this is called Cantor's theorem.

The standard proof of Cantor's theorem involves a self-reference idea that is used in many deep ways in math and computer science.

1. Finite Cantor's theorem

Finite Cantor's Theorem

Let A be a finite set, and $\mathcal{P}(A)$ be its power set. Then

$$|A| < |\mathcal{P}(A)|.$$

1. Finite Cantor's theorem

Finite Cantor's Theorem

Let A be a finite set, and $\mathcal{P}(A)$ be its power set. Then

$$|A| < |\mathcal{P}(A)|.$$

Proof.

It is enough to recall that $|\mathcal{P}(A)| = 2^{|A|}$. □

1. Finite Cantor's theorem

Finite Cantor's Theorem

Let A be a finite set, and $\mathcal{P}(A)$ be its power set. Then

$$|A| < |\mathcal{P}(A)|.$$

Proof.

It is enough to recall that $|\mathcal{P}(A)| = 2^{|A|}$. □

The above proof only works when A is finite. How can we prove that there is never a surjection $f : A \rightarrow \mathcal{P}(A)$?

2. Functions $f : A \rightarrow \mathcal{P}(A)$.

Let $A = \{1, 2, 3\}$, so

$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

- ① Write down any function $f : A \rightarrow \mathcal{P}(A)$.
- ② Can you choose one that is an injection?
- ③ Can you choose one that is a surjection? (Proof?)
- ④ For your function f , compute $D = \{a \in A : a \notin f(a)\}$.
- ⑤ For your function, f , is there any $y \in A$ such that $f(y) = D$?

2. Functions $f : A \rightarrow \mathcal{P}(A)$.

Let $A = \{1, 2, 3\}$, so

$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

- ① Write down any function $f : A \rightarrow \mathcal{P}(A)$.

$$f(1) = \{1, 2\}, f(2) = \{1, 3\}, f(3) = \emptyset$$

- ② Can you choose one that is an injection?
- ③ Can you choose one that is a surjection? (Proof?)
- ④ For your function f , compute $D = \{a \in A : a \notin f(a)\}$.
- ⑤ For your function, f , is there any $y \in A$ such that $f(y) = D$?

2. Functions $f : A \rightarrow \mathcal{P}(A)$.

Let $A = \{1, 2, 3\}$, so

$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

- ① Write down any function $f : A \rightarrow \mathcal{P}(A)$.

$$f(1) = \{1, 2\}, f(2) = \{1, 3\}, f(3) = \emptyset$$

- ② Can you choose one that is an injection? Yes, $f(x) = \{x\}$ also works.
- ③ Can you choose one that is a surjection? (Proof?)
- ④ For your function f , compute $D = \{a \in A : a \notin f(a)\}$.
- ⑤ For your function, f , is there any $y \in A$ such that $f(y) = D$?

2. Functions $f : A \rightarrow \mathcal{P}(A)$.

Let $A = \{1, 2, 3\}$, so

$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

- ① Write down any function $f : A \rightarrow \mathcal{P}(A)$.

$$f(1) = \{1, 2\}, f(2) = \{1, 3\}, f(3) = \emptyset$$

- ② Can you choose one that is an injection? Yes, $f(x) = \{x\}$ also works.
- ③ Can you choose one that is a surjection? (Proof?) No, this is impossible.
- ④ For your function f , compute $D = \{a \in A : a \notin f(a)\}$.
- ⑤ For your function, f , is there any $y \in A$ such that $f(y) = D$?

2. Functions $f : A \rightarrow \mathcal{P}(A)$.

Let $A = \{1, 2, 3\}$, so

$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

- ① Write down any function $f : A \rightarrow \mathcal{P}(A)$.

$$f(1) = \{1, 2\}, f(2) = \{1, 3\}, f(3) = \emptyset$$

- ② Can you choose one that is an injection? Yes, $f(x) = \{x\}$ also works.
- ③ Can you choose one that is a surjection? (Proof?) No, this is impossible.
- ④ For your function f , compute $D = \{a \in A : a \notin f(a)\}$. $D = \{2, 3\}$
- ⑤ For your function, f , is there any $y \in A$ such that $f(y) = D$?

2. Functions $f : A \rightarrow \mathcal{P}(A)$.

Let $A = \{1, 2, 3\}$, so

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

- ① Write down any function $f : A \rightarrow \mathcal{P}(A)$.

$$f(1) = \{1, 2\}, f(2) = \{1, 3\}, f(3) = \emptyset$$

- ② Can you choose one that is an injection? Yes, $f(x) = \{x\}$ also works.
- ③ Can you choose one that is a surjection? (Proof?) No, this is impossible.
- ④ For your function f , compute $D = \{a \in A : a \notin f(a)\}$. $D = \{2, 3\}$
- ⑤ For your function, f , is there any $y \in A$ such that $f(y) = D$? No, $f(1) \neq D, f(2) \neq D, f(3) \neq D$.

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

We see that $|A| \leq |\mathcal{P}(A)|$ by the injection $f(x) = \{x\}$.

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

We see that $|A| \leq |\mathcal{P}(A)|$ by the injection $f(x) = \{x\}$.

For the sake of contradiction, let $f : A \rightarrow \mathcal{P}(A)$ be a bijection (we only need surjection). Define

$$D = \{a \in A : a \notin f(a)\} \subseteq A.$$

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

We see that $|A| \leq |\mathcal{P}(A)|$ by the injection $f(x) = \{x\}$.

For the sake of contradiction, let $f : A \rightarrow \mathcal{P}(A)$ be a bijection (we only need surjection). Define

$$D = \{a \in A : a \notin f(a)\} \subseteq A.$$

Since f is a surjection, there is a $y \in A$ with $f(y) = D$.

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

We see that $|A| \leq |\mathcal{P}(A)|$ by the injection $f(x) = \{x\}$.

For the sake of contradiction, let $f : A \rightarrow \mathcal{P}(A)$ be a bijection (we only need surjection). Define

$$D = \{a \in A : a \notin f(a)\} \subseteq A.$$

Since f is a surjection, there is a $y \in A$ with $f(y) = D$.

Is $y \in D$?

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

We see that $|A| \leq |\mathcal{P}(A)|$ by the injection $f(x) = \{x\}$.

For the sake of contradiction, let $f : A \rightarrow \mathcal{P}(A)$ be a bijection (we only need surjection). Define

$$D = \{a \in A : a \notin f(a)\} \subseteq A.$$

Since f is a surjection, there is a $y \in A$ with $f(y) = D$.

Is $y \in D$?

- ① If no, then by definition of D , $y \in f(y) = D$.

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

We see that $|A| \leq |\mathcal{P}(A)|$ by the injection $f(x) = \{x\}$.

For the sake of contradiction, let $f : A \rightarrow \mathcal{P}(A)$ be a bijection (we only need surjection). Define

$$D = \{a \in A : a \notin f(a)\} \subseteq A.$$

Since f is a surjection, there is a $y \in A$ with $f(y) = D$.

Is $y \in D$?

- ① If no, then by definition of D , $y \in f(y) = D$.
- ② If yes, then $y \notin f(y) = D$.

3. Cantor's theorem

Cantor's Theorem

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

We see that $|A| \leq |\mathcal{P}(A)|$ by the injection $f(x) = \{x\}$.

For the sake of contradiction, let $f : A \rightarrow \mathcal{P}(A)$ be a bijection (we only need surjection). Define

$$D = \{a \in A : a \notin f(a)\} \subseteq A.$$

Since f is a surjection, there is a $y \in A$ with $f(y) = D$.

Is $y \in D$?

- ① If no, then by definition of D , $y \in f(y) = D$.
- ② If yes, then $y \notin f(y) = D$.

This is a contradiction or paradox.

4. Corollaries

Theorem

- ① $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \dots$
- ② $|\mathbb{R}| < |\mathcal{P}(\mathbb{R})| < |\mathcal{P}(\mathcal{P}(\mathbb{R}))| < \dots$

4. Corollaries

Theorem

- ① $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \dots$
- ② $|\mathbb{R}| < |\mathcal{P}(\mathbb{R})| < |\mathcal{P}(\mathcal{P}(\mathbb{R}))| < \dots$

In words: There are infinitely many sizes of infinity.

4. Corollaries

Theorem

- ① $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \dots$
- ② $|\mathbb{R}| < |\mathcal{P}(\mathbb{R})| < |\mathcal{P}(\mathcal{P}(\mathbb{R}))| < \dots$

In words: There are infinitely many sizes of infinity.

Theorem

$$|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$$

This is a very challenging exercise.

Reflection

- Do all uncountable sets have the same cardinality?
- Is there a largest size of infinity?
- How is this proof of Cantor's theorem like the Barber paradox?