

MAT102H5 Y - SUMMER 2020 - QUIZ 4 - SOLUTIONS

SUBMISSION

- You must submit your completed Quiz on Crowdmark by 6:00pm (EDT) Tuesday July 28, 2020.
- Late submissions will not be accepted.
- You should start uploading your quiz no later than 5:45pm.
- If you require additional space, please insert extra pages.
- You do not need to print out this quiz; you may submit clear pictures/scans of your work on lined paper, or screenshots/PDFs of your work.

ADDITIONAL INSTRUCTIONS

You must justify and support your solution to each question.

PERMITTED RESOURCES

During the quiz:

- (1) You may use any resources (course notes, textbook, videos) that have been posted to Quercus by instructors or TAs.
- (2) You may use personal notes related to official course material (from reading the textbook, participating in lectures/tutorials, completing problem sets).
- (3) Do not use personal notes related to other material (e.g. notes created by studying external websites)
- (4) Do not communicate with anyone other than the instructors.
- (5) Do not use Piazza.
- (6) Do not use any online resources other than Quercus and Crowdmark.

ACADEMIC INTEGRITY

By submitting this quiz you affirm that your submission represents entirely your own efforts. You confirm that:

- You have not copied any portion of this work.
- You have not allowed someone else in the course to copy this work.
- You understand the consequences of violating the University's academic integrity policies as outlined in the *Code of Behaviour on Academic Matters*.

PROBLEM 1 [10 POINTS]

(1) Jr. Proofini wants to write down the sum of squares $1 + 4 + 9 + \dots + n^2$, and she mistakenly writes:

$$\sum_{i=1}^n n^2.$$

Explain her mistake to her, and write down the correct summation notation.

Solution. The mistake is that her square term doesn't depend on the (dummy) index i , so she is adding the end term n^2 repeatedly. A correct summation notation is:

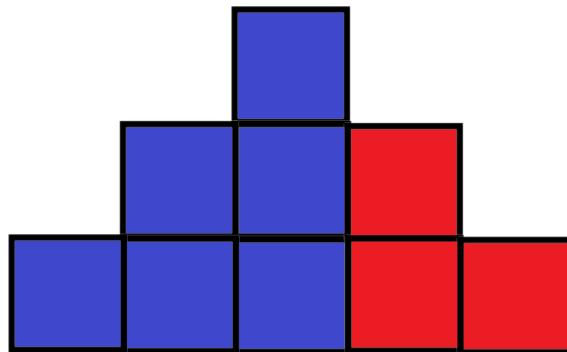
$$\sum_{i=1}^n i^2.$$

Grading. This question is worth 4 points: 2 points for correctly pointing out the error, and 2 points for the correct summation.

(2) Let $n \in \mathbb{N}$. Prove that

$$\sum_{i=0}^{n-1} (2i + 1) = \left(\sum_{i=0}^n i \right) + \left(\sum_{i=0}^{n-1} i \right).$$

Solution. This question was motivated by the following image ($n = 3$). The horizontal rows are the sum of the odds ($1 + 3 + 5$), but the blue left ($1 + 2 + 3$) and red right ($1 + 2$) halves are each the sums of consecutive integers.



Note that this is not a formal proof.

Solution. Note

$$\begin{aligned}
 \sum_{i=0}^{n-1} (2i + 1) &= \sum_{i=0}^{n-1} (i + i + 1) \\
 &= \sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} i + \sum_{i=0}^{n-1} 1 \\
 &= \sum_{i=0}^{n-1} i + \left(\sum_{i=0}^{n-1} i \right) + n && \text{Since } \sum_{i=0}^{n-1} 1 = n \\
 &= \sum_{i=0}^n i + \sum_{i=0}^{n-1} i
 \end{aligned}$$

The final equality is because

$$\sum_{i=0}^n i = 1 + 2 + \dots + (n-1) + n = \left(\sum_{i=0}^{n-1} i \right) + n.$$

Grading. This question is worth 6 points.

- (a) 2 points for correctly breaking up the sum across $2i + 1$.
- (b) 2 points for the correct sum of 1s to be n .
- (c) 2 points for absorbing the n into the sum.

PROBLEM 2 [10 POINTS]

Consider the sequence defined recursively as

$$a_1 = 1 \quad \text{and} \quad a_{n+1} = n + 1 - a_n, \forall n \in \mathbb{N}.$$

Hint: Induction is not needed for one of these two parts.

(1) Prove that for all $n \in \mathbb{N}$ that $a_{n+2} = 1 + a_n$.

Solution. We solve this question directly, without induction. Let $n \in \mathbb{N}$.

Note

$$\begin{aligned} a_{n+2} &= n + 2 - a_{n+1} && \text{By definition} \\ &= n + 2 - (n + 1 - a_n) && \text{By definition} \\ &= 1 + a_n \end{aligned}$$

Grading. This is worth 5 points: 3 points for the algebra, and 2 points for a clear explanation.

(2) Prove that for all even $n \in \mathbb{N}$ that $a_n = \frac{n}{2}$.

Solution. The first 10 terms are:

$$1, 1, 2, 2, 3, 3, 4, 4, 5, 5$$

Solution. We prove this by induction on the evens. Let $P(n)$ be the statement " $a_n = \frac{n}{2}$ ".

Base, $n = 2$ Note that $a_2 = 2 - a_1 = 2 - 1 = 1 = \frac{2}{2}$.

Induction Suppose $P(n)$ is true for a particular even natural number n .

Note

$$\begin{aligned} a_{n+2} &= 1 + a_n && \text{By part 1} \\ &= 1 + \frac{n}{2} && \text{By IH} \\ &= \frac{2+n}{2} \end{aligned}$$

As desired.

Grading.

- 1pt: Stated the $P(n)$ explicitly and correctly.
- 1pt: Proved the base case explicitly and correctly.
 - Do not award this point if the student starts with the conclusion, and then derives a true statement.
- 1pt: The induction hypothesis was explicitly assumed for a particular even $n \in \mathbb{N}$, and its use was pointed out (correctly).
 - Use of strong induction is acceptable. But leave a comment.
- 2pt: The structure of the proof of the inductive step was correct.
 - Do not award this point if the student starts with the conclusion, and then derives a true statement.
 - Award this point only if the mathematical idea of the inductive step is mostly correct.