## Creeping Along

In my ongoing love affair with compactness I am constantly revisiting a particular proof of the Heine-Borel theorem, a characterization of compactness in $\mathbb{R}$. There are two proofs that I know of: the standard “subdivision” proof and the “creeping along” proof. I am going to focus on the creeping along proof.

Heine-Borel Theorem. A subset $A \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.

To do some creeping we need to collect some useful facts.

Fact 1. A subset $\mathcal{A} \subseteq \mathbb{R}$ is bounded if and only if is contained in some closed interval $[a,b]$

Fact 2. The set $\mathbb{R}$ is complete (as a linear order) because every non-empty set $A \subseteq \mathbb{R}$ with an upper bound has a least upper bound, called $\sup A$.

Fact 3. Closed subsets of compact subsets of $\mathbb{R}$ are in fact themselves compact. With fact 1 this means that it is enough to show that closed and bounded intervals in $\mathbb{R}$ are compact. (In general closed subsets of compact $T_2$ spaces are compact.)

So now let us creep: