## Facts about the Urysohn Space – Some useful, some cool

(This is almost verbatim the talk I gave recently (Feb 23, 2012) at the Toronto Student Set Theory and Topology Seminar. I will be giving this talk again on April 5, 2012)

I have been working on a problem involving the Urysohn space recently, and I figured that I should fill people in with the basic facts and techniques involved in this space. I will give some useful facts, a key technique and 3 cool facts. First, the definition!

Definition: A metric space $U$ has the Urysohn property if

• $U$ is complete and separable
• $U$ contains every separable metric space as an isometric copy.
• $U$ is ultrahomogeneous in the sense that if $A,B$ are finite, isometric subspaces of $U$ then there is an automorphism of $U$ that takes $A$ to $B$.

You might already know a space that satisfies the first two properties – The Hilbert cube $[0,1]^\omega$ or $C[0,1]$ the continuous functions from $[0,1]$ to $[0,1]$. However, these spaces are not ultrahomogeneous. Should a Urysohn space even exist? It does, but the construction isn’t particularly illuminating so I will skip it.